Tesi doctoral en Matematiques

HIGHER LIMITS VIA
HOMOTOPICAL ALGEBRA

Guille Carrién Santiago

Supervisat per:

Natalia Castellana Vila
Antonio Diaz Ramos

2023

Departament de Matematiques
Universitat Autonoma de Barcelona






AGRAIMENTS

En primer lugar agradecer a mis directores Natalia Castellana y Antonio Diaz
por su esfuerzo, paciencia y ayuda durante todos estos afios, y especialmente en
el sprint final de esta tesis.

Gracies a tots els membres i exmembres del grup de Topologia algebraica de la
UAB, aixi com a tot el grup de doctorands. Vull mencionar especialment a 1’Alex,
en Wilson i en Thomas per totes les aventures viscudes tan dintre com a fora de
la uni i ensenyar-me que els viatges "con calma" sén més divertits. Extiendo este
agradecimiento a les jévenes y no tan jovenes de la RET asi como a les infiltrades
Bea, Fisac y Juanlu por hacer de la RET una familia.

I wish to express my gratitude the EPFL’s topology group for their hospitality
during my stay there. Especialmente a Jérome Schere por su acogida, amabilidad

y ensefianzas, asi como por todo el trabajo durante y después de mi estancia.

No puedo perder la ocasién de agradecer a mi familia, tanto la dada como la
escogida. A mis padres, a la meva parella, en Marti y a las de siempre, Lili, Irene
y Javi por el apoyo, la comprensién y la energia que me han brindado. Gracias

también a Joan, Yaiza y Ruben por hacer de un piso un hogar.

Finally, I appreciate the reader taking the time to read this thesis.






CONTENTS

Introduction
1 Preliminaries
1 Posets and El-categories

2 Limits and colimits
21 Limit ... ... o oo
22 Colimit . ... ... ... ..
23 Kanextension . ... ... ... ... o o oo
3 Model categories
3.1 Definition and examples . . . . .. .. ... ... . 0L
3.2 Homotopy betweenmaps . . ... ... ... .......... ...
3.3 Derived functors . . . . . .. ...
4 Reedy structure
4.1 Functors and natural transformation . . . . . ... ... ... ....
4.2 Model category structure. . . . ... ... L L L
11 Thesis results
5 Higher limits

1.1 Shellable posets . . . .. ... ... .. ... ... ..

25
26
29
32
35
36
39
42
47

52

5.1 Homotopy theoretical approach . . . . ... ... ... ... ...

5.2 On fibrant replacement constructions . . . ... ...........



CONTENTS

5.3 A cofibrant replacement construction. . . . . ... ... ... .. .. 74
Acyclicity of Mackey functors for posets 77
Vanishing bounds 89
7.1 Combinatorial vanishingbound . . . . . . ... ... .. ... .. .. 90
7.2 Inductive vanishingbound . . . . . . ... ... ..o 0000 98
7.3 Vanishing Bound by atomic functors . . . . . ... ... ... ... .. 102
Sheaf cohomology of CL-shellable posets 107
8.1 Combinatorial properties of the cocylinder . . ... ... .. .. .. 110

8.2 Cohomology of the i-linear forms sheaf . . ... ........... 117



Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Figure 20

LIST OF FIGURES

Finite model of the sphere S*. . . . ... ... ..... ... I
Alabelled poset. . . . ... ... ... .. L. VII
Filtration from the maximal tree . . . . . . . ... ... ... VII
The face posetof A[2]. . . . .. ... ... L. 6
A filtered but not pure poset. . . . . ... ... ... 8
Hasse diagram of the poset described in Example 1.8. . . . 8
A non-example of a shellable complex. . . . . .. ... ... 9
A shellable complex of dimension 1. . . . .. ... .. ... 9
A shellable complex [Bjogz2, Figure 1]. . . . ... ... ... 10
Bruhat order of I;(4) = {a,bla®> = b*> =e¢, (ab)* =¢). . ... 11
EL-labeling of the face lattice of asquare. . . . . . ... .. 12
A CL-labeling. . ... ....... ... . ... . ... ... 14
A CL-shellable poset . . ... ... ... ........... 15
A non CL-shellableposet . . . . .. .............. 15
Construction of the connected sequence . . ... ... ... 17
Hyperplane arrangement. . . . . ... ... ......... 19
p closes a circuit in S’ butnotin S. . . ... ... ... ... 90
Maximal tree of a given poset. . . . . . ... ... ... ... 95
The bound given by the maximal tree is optimal. . . . . . . 97
The bound of the maximal tree holds. . . ... ....... 98






INTRODUCTION

Derived functors of limits and colimits, also known as higher limits and higher
colimits, are powerful tools that arise naturally in various problems related to
homotopy theory, homological algebra, and combinatorics. They can be seen as a
generalised version of cohomology (resp. homology) with twisted coefficients in

a functor F for a small category C,
Ri(lim(—))(F) = H(C;F),  Li(colim(—))(F) = H;(C; F).

In the realm of homotopy theory, higher limits have proven to be an invaluable
tool for studying the cohomology groups of spaces that are constructed piece-wise.
Bousfield and Kan’s seminal work [BK72] established a deep connection between
algebraic topology and simplicial methods in homological algebra by describing
a spectral sequence that relates the cohomology groups of the homotopy colimit
of a functor with the limit of the cohomology groups of the functor. The initial

page of these spectral sequences can be expressed in terms of higher limits:

H'(C; H/(F)) = H'*J(hocolim¢F).
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This implies that the lim-acyclicity of the functor H/(F), for every j > 0, guarantees

that cohomology and homotopy colimit commute.

This spectral sequence yields an interesting obstruction theory to determine
the existence and uniqueness of maps from a homotopy colimit. This dates back
to Wojtkowiak’s work [Woj87]. In detail, let F: C — Top be a functor over a small

category C. The restriction morphism gives rise to a map:

[hocolim F(c), X] — lim[F(c), X], (1)
ceC ceC

that decomposes a continuous map f: hocolim F — X into a compatible tuple,

up to homotopy, (fc: F(c) — X)ce¢ of continuous maps. Then, it is natural to ask

if a compatible tuple of maps (f.) lifts to a map f: hocolim F — X. This question

has a positive answer if the (1 + 1)-st higher limit of the functor «,: C°P — Ab,

described by «a,(c) = 7, (map(F(c), X), f(c)), vanish, that is,

H"Y(C,a,) = 0, for all n > 0.

Moreover, the uniqueness of the map f is related to the vanishing of the n-th
higher limit of the same functor.

This fundamental concept has been well studied and used successfully in the
literature; see Jackowski, McClure, and Oliver’s survey [[MOg4]. There are more
recent examples of related problems, such as the obstruction for the existence
and uniqueness of the classifying space of a fusion system, as presented in Broto,
Levi, and Oliver’s work [BLO03], or the existence of homotopy representations
for compact p-local groups, shown by Cantarero and Castellana [CC17].

These examples demonstrate the fundamental need to provide conditions of
acyclicity for functors or, at least, establish vanishing bounds for their higher
limits. The most significant results for the lim-acyclicity of functors over orbit
categories are associated with Mackey functors [[M9g2, DRP15], and Lambda
tunctors [[MOgz2a, IMOgzb]. Concerning posets, the Mittag-Leffler conditions are
widely recognised [Weig4], and there are also conditions related to projectivity
[DRog] or with lower factoring sections [KL22]. Futhermore, higher limits over a

category can be reduced to higher limits over posets through a spectral sequence
[Stoo1].
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In sheaf theory, higher limits over posets play a central role since they compute
the sheaf cohomology. Note that finite Typ-spaces can be identified with finite
posets via the Alexandroff topology, and by McCord’s theorem [McC66], every
simplicial complex has a finite model, up to weakly homotopy equivalence. Therefore,
sheaves over finite TO-spaces or simplicial complexes can be seen as sheaves over
posets.

@B — [}

Figure 1: Finite model of the sphere S'.

Under this identification, if P is a finite Typ-space, the cohomology of a sheaf
F: Open(P)°? — Modp is isomorphic to the higher limits of F: PP — Modg,
where F is the composite of restriction of F to the minimal open sets P, followed
by the projection P<p — p.

H*(Open(P); F) = H*(P; F).

This manifests that it is not only fundamental to have vanishing bounds of
higher limits but also to be able to compute them explicitly. Some examples
of computational techniques are provided by Everitt-Turner for cellular posets
[ET15] and for geometric lattices [ET22b]. Additionally, Curry’s thesis [Curi4] has
shown how sheaf cohomology (higher limits) over finite posets is an extraordinary

tool in data analysis and engineering.

In this thesis, we develop a new technique to compute higher limits and

colimits using tools from homotopy theory, replacing the classical injective (resp.

projective) resolution [Weigs, Chapter 2] that produces the cochain complex
associated with the functor [AKO11, Section III.5.1] with a fibrant (resp. cofibrant)
replacement that we construct explicitly.
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Categories that naturally emerge in homotopy theory or group theory are
categories in which every endomorphism is an isomorphism, and most of them
are equipped with a IN-filtration; we name these categories filtered El-categories,
see [Liic89]. By Berger and Moerdijk’s work [BM11], filtered El-categories admit
a generalised Reedy structure. Given a filtered El-category, a commutative ring
with unit R is said to be C-bijective if and only if | Aut(c)| is invertible in R for
every ¢ € C. From now on, C will be a filtered El-category and R a C-bijective

ring.

The first step to setting up our homotopy theoretical framework is to identify
the category of functors Fun(C, Modg) with the full subcategory of those functors
in Fun(C,Ch(R)) which take values concentrated in degree 0. Next, using the
generalised Reedy structure on C and the C-bijectiveness of R, we introduce a
model category structure on the category of functors Fun(C, Ch(R)), which we
named the direct model category structure, see Proposition 5.1.8, in which higher
colimits can be computed by a cofibrant replacement.

Proposition 5.1.15 Let C be a filtered El-category, and R be a C-bijective ring. Given
a functor F: C — Modg, then,

H;(F;C) = Hj(colim QF)

where QF: C — Ch(R) is a cofibrant replacement of F in the direct model category
structure.

As a direct corollary, we obtain that every cofibrant functor is colim-acyclic.
A functor F: P — Modg over a filtered poset is cofibrant in the direct model
category if and only if the natural morphism

lim F(g) — F
colim F(q) — F(p)

is injective for every p € P.
One of the consequences of this result is that we characterise pseudo-projective

functors over filtered posets [DRog] as cofibrant functors in this model category

structure.
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The functor F is said to be pseudo-projective if for every p € P and every element
@Dg<pxq € Dy, F(q), the condition:

2, Flg<p)(xg) =0

q<p

implies that x4 € Imp(q) = 2, Im F(k < q) for every g € max{q < p | x4 # 0}.

Theorem 6.10 Let P be a filtered poset, and F: P — Ab be a functor. Then F is
cofibrant if and only if it is pseudo-projective.

Moreover, we define Mackey functors over posets inspired by the classical
Mackey functors over the orbit category of a group but restricted to the subcate-
gory of normal subgroups. Finally, define weak Mackey functors by dropping
the contravariant functoriality and the meet-semilattice constraint. With this

definition, we can now prove the following theorem.

Theorem 6.8 Let P be a filtered poset and F: P — Ab be a weak Mackey functor
with a quasi-unit. Then, F is pseudo-projective, and hence, it is colim-acyclic.

Dualising, we jump to the category of contravariant functors Fun(C°P, Ch(R))
where the inverse model category structure Proposition 5.1.3 allows us to compute
higher limits via fibrant replacement, see Proposition 5.1.12. As a direct corollary,
we obtain that given a functor F, a bound for the height of its fibrant replacement

RF induces a vanishing bound for its higher limits.

In general, computing fibrant replacement is not an easy task. Nevertheless, one
of the main advantages of our method is that, by the combinatorial structure of the
generalised Reedy category, we construct a fibrant replacement of a given functor
inductively. Roughly speaking, given a functor F: C°? — Modp, constructing
a fibrant replacement becomes, for every c € C, a factorisation problem. The
method consists of choosing by induction on the filtration, for every object

c € C, a cochain complex RF(c) together with two morphisms, an epimorphism

\%
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RF(c) — lims<. RF(s), and a morphism that induces isomorphism in cohomology
F(c) — RF(c), such that the following square commutes:

F(c) — lim,s_ F(s)

~

~
1 ~

~
I S
|~ -

~

) N
v A

RF(c) — limg_,. RF(s).

The mapping cocylinder of the composite, see Definition 5.2.3, provides a standard
choice. However, this choice is not always the best for providing vanishing bounds
since it increases the height of the functor in each step. To solve this inconvenience,
we provide a truncated version of the mapping cocylinder that does not increase
the height of the functor. As one can expect, this truncated version cannot always
be used. But, when possible, it is the key in the proof of the vanishing bounds
that we describe next, and it is based on the following result.

Corollary 5.1.14 Let C be a filtered El-category, R be a C-bijective ring, and
F: C°? — Modg be a functor. If RF: C°° — Ch(R) is a fibrant replacement of F
such that h(RF) = n, then

H'(C;F) =0

for every i > n.

The first vanishing bound presented in this thesis is about the combinatorial
aspects of the given poset. The strategy consists of labelling the poset with
a function that indicates the possibility of using the truncated version of the
mapping cocylinder. The labelling of a poset P is a function B: P — IN that
coincides with the degree for objects of degree 0 and 1 and, inductively, for an
object p € P, let n = max,<p, B(q). If p closes a circuit using only the objects with
labels n and n — 1, then we label B(p) = n + 1; otherwise, we label B(p) = n; see

Figure 2.

Theorem 7.1.4 Let P be a filtered poset, and B: P — IN its associated labelling
function. For every functor F : P°P — Ab,

H'(P;F) =0,

ifi > sup B.



INTRODUCTION |

2 1)
NG
Figure 2: A labelled poset.

A direct application of this result is that we can produce a vanishing bound
for a poset P that depends on a filtration Py  --- < P, = P, where Py is a
maximal tree of P and , fixed a degree n;, P; is obtained by adding to P;_; every
missing arrows whose codomain have degree n;; see Figure 3 where the degrees

are indicated vertically. Thus, the number of elements in this filtration induces a

Po Py P, P = P;

Figure 3

vanishing bound for every functor P — Ab.

Theorem 7.1.7 Let P be a filtered poset with degree function d: P — IN, and T be
a maximal tree of H, the Hasse diagram of P. Let D(T) = #{d(q) | p — q € H\T}.
Then, for every functor F : P°P — Ab:

H'(P;F) =0
for every i > 2D(T) + 1.

This technique also produces a local to global bound, describing the vanishing of
the higher limits of a functor F: P°? — Ab in terms of the sub-functors F |'p<p for
every p € P.

VI
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Theorem 7.2.1  Let P be a filtered poset, and F : P°P — Ab be a functor. If for
every p € P, H*(P_,; F) = 0 for every k > n, then:

HYP;F) =0
for every k > n.

The last vanishing bound presented in this text relates the higher limits of a
functor F: P°P — Ab with the ordinary cohomology with coefficients in abelian
groups of a family of subposet of P.

A frequent method in the literature is filtering a functor by subfunctors such
that their successive quotients take the value zero except on one object; see, for
example, [[MOgz2b, Proposition 5.6] or [BLOo3, Corollary 3.4]. These are called
atomic functors. In the case of posets, given a filtered poset P and an abelian
group A, the atomic functor of A at pg € P, denoted by A(A, pg) : PP — Ab, is
the functor defined by:

A ifp=po
0 otherwise.

A(A, po)(p) = {

We first show that the higher limits of an atomic functor A(A; py) are isomor-
phic to the reduced cohomology of the nerve of P, shifted by 1, i.e,

H(P; A(A, po)) = H N ([P s A).
Now, using the technique of filtering a functor F: P°P — Ab into subfunctors
FFc...cF'=F
such that its successive quotients are isomorphic to a direct sum of atomic functors

F\/Fl = @ AE(p)ip)
d(p)=k

we prove the following result.
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Theorem 7.3.4  Let P be a finite filtered poset and F : P°P — Ab be a functor. If
there exists k > O such that, for every p € P, ﬁ”(|77>p|;F(p)) =0, for n > k; then

H"(P;F) =0 forn > k.

The last contribution of this thesis is about the higher limits of functors over
dual CL-shellable posets. By the geometric interpretation of this context, we

discuss this problem in terms of sheaves and sheaf cohomology.

Roughly speaking, a bounded, finite and pure poset P is said to be dual
CL-shellable if, for every irreducible chain,

€0 <€l <C = ...cp_1=<1,

where 1 is the maximum of P, there exists a linear order <. in the set of elements
that are covered by cp, P<,, that is compatible with the order induced by the
chain obtained from c by omitting ¢y and provides some connectivity properties.
This notion was originally presented by Bjorner and Wachs [BW82] to show that

Bruhat order of Coxeter groups is a shellable poset.

One of the most relevant properties of shellable posets is that they have the
homotopy type of a wedge of k (dim |P|)-spheres for some k that depends on P.
Therefore, the constant sheaf on R over a CL-shellable poset, R: P°P — Modg,
verifies:

R¥ if i = dim |P|,
Hi(P\{O,i}}B) =~<{R ifi=0, or

0 otherwise.

Motivated by this example, we abstract the essential property of the constant
sheaf. If F: P°P — Modp is a sheaf over a dual CL-shellable poset, one says that
F has the stability property at codegree n, if for every object p € P of codegree n,
and every Q < P, satisftying some mild compatibility properties, the natural
morphism

F(p) - im F
(») Q

is an epimorphism.

IX
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Theorem 8.2 Let P be a dual CL-shellable poset of degree d > 2, n € IN such that
1<n<d-1 and F: P°°® — Modg be a sheaf. If the pair (P, F) has the stability
property in codegree n, then

H"(P\{1};F) = 0.

Examples of sheaves verifying this property are provided by the i-linear forms
sheaves in a hyperplane arrangement. Let V be a finite-dimensional k-vector
space and H be a finite set of hyperplanes of V. The arrangement lattice of H,
denoted by Ly, is the intersection lattice generated by the set H with the empty

intersection being V, ordered by inclusion. The lattice structure is given by:

0=()h 1=V, d(x)=dim(x) - dim(0),
heH

XAY=XNY, xvy:ﬂ{zeLH|xuycz}.

For every i > 1, we define the i-linear forms sheaf on Ly, to be the sheaf
Ai(—)*: Lf;f — Vecty that sends every W € Ly to the i-linear forms of W, i.e., the
i-th exterior product:

A'Hom(W, k) = A'TW*,

and W/ < W to the restriction A/W* — A}(W')*.

Theorem 8.2.1 Let V be a finite-dimensional vector space, H be a finite set of
hyperplanes of V, and Ly, the arrangement lattice of H. For every j < d(Ly) —i—2,
the j-th cohomology of the i-linear forms sheaf on Ly \{1} vanishes, that is:

HI(Ly\{1}; A'(-)*) = 0.

OUTLINE OF THIS THEsIS-  This thesis is divided into two parts. In Part I,
we summarise the results about posets and El-categories, including some proofs
about hyperplane arrangements, Chapter 1; limits, colimits and Kan extensions,
Chapter 2; model categories, Chapter 3; and Reedy structures, Chapter 4.

In Part II, we expose the results of the thesis, and it is divided into 4 chapters.
In Chapter 5, we describe two model categories for the category of functors that
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are useful to compute higher limits and colimits and essential for the rest of
the thesis. In Chapter 6, we define Mackey functors for posets, and we show
that, in the case of Mackey functors with quasi-unit, their covariant parts are
cofibrant functors. We characterise pseudo-projective functors as cofibrant objects.
In Chapter 7, we introduce some vanishing bounds: the first is provided just
by the combinatorics aspect of the poset; the second one by a local-to-global
method; and the last one by comparing the functor with the higher limits of a
family of atomic functors. Finally, in Chapter 8, mimicking the constant functor,
we abstract a condition that implies that the higher limits of a functor vanish in
non-extreme dimensions. We conclude that chapter by showing that the family
of i-linear forms in an arrangement lattice satisfy the stability property described
in this chapter.
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Chapter 1

POSETS AND EI-CATEGORIES

This chapter summarises the basic results about posets and El-categories that
we will need in the following chapters. We assume familiarity with the basic
notions of Category Theory, such as categories, functors, natural transformation,
and adjointness. If not, we refer the reader to Mac Lane’s book [MLg8] or
Leinster’s book [Lei14].

A partially ordered set (poset for short) is a set P equipped with a binary relation
< that is:

REFLEXIVE: p<pforallpeP,
TRANSITIVE: if p<gand g <r, then p <7, and
ANTISYMMETRIC: if p<gand g < p, thenp = g.
Given a poset P, we can construct a category whose objects are the elements in

P, and there is a single morphism p — g if and only if p < q. We abuse notation,
and we denote by P either the poset as a set or as a category.
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A natural generalisation of posets are categories in which every endomorphism
is an isomorphism. Following [Liic89], a category C with this property, that is,

End¢(c) = Aute(c) forall ce C
is said to be an El-category. Examples of El-categories naturally appear in group

theory as shown next.

Example 1.1. Let G be a finite group, the orbit category of G, denoted by O(G), is
the category whose objects are the homogeneous G-sets G/H, for every H < G,
and whose morphism sets are G-equivariant maps G/H — G/K. The orbit
category O(G) is an El-category.

Example 1.2. Let G be a group and H < G be a subgroup, not necessarily normal.
Let C be the category with two objects 0 and 1, and the hom-set is given by:

Hom(0,0) = G Hom(0,1) = @
Hom(1,1) = {1} Hom(1,0) = G/H.

The composition is given by the product in G and the left action of G on G/H. By
conctruction, C is an El-category.

Example 1.3. Let p be a prime number and S be a finite p-subgroup. A fusion
system over S is a category F whose objects are the set of all subgroups of S and
the hom-set verifies the following two properties for all P, Q < S:

1. Homg(P, Q) € Homz(P,Q) < Inj(P, Q), where Homg(P, Q) is the set of
homomorphisms given by a conjugation in S, and Inj(P, Q) are the injective

homomorphisms; and

2. each ¢ € Homg(P, Q) is the composite of an F-isomorphism followed by
an inclusion.

Every fusion system is an El-category.

Proposition 1.4. Let C be an El-category. There exists a poset [C| whose elements are
the isomorphism classes of objects and given x|, [y] € [C],

[x] <[y] <= Home(x,y) # 2.

We call [C] the isomorphism poset of C.
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Proof. Reflexive and transitive properties are a consequence of the existence of
the identity and composition, respectively; it remains to check the antisymmetric
one. This property holds because if [x] < [y] and [y] < [x], then there exists a
pair of morphism f: x — y and g: ¥ — x, then the composites f o g € Autc(y),
and g o f € Autg(x) are invertible morphism, therefore, [x] = [y]. O

Definition 1.5. A filtered El-category is a pair (C,d) where C is an El-category
and d: [C] — N is an order-preserving map. This map is called filtration or

degree function.

In this thesis, we primarily focus on functors indexed in posets, although
we work in the more general context of El-categories in Chapter 5. The main
motivation for this restriction is that it simplifies the computation while still
allowing it to handle interesting problems in homotopy theory and group theory.
Moreover, following Stomiriska’s work [Stoo1], the computation of higher limits
over an El-category can be reduced to the computation of higher limits over

posets and groups.

Example 1.6. Some examples of posets.
1. The set of natural numbers IN with the standard order relation < is a poset.
2. The set of positive integers Z* equipped with the divisibility relation, i.e.,
x <yify | xis a poset.
3. The set of non-zero integers Z\{0} with the divisibility relation is not a

poset because the relation is not antisymmetric

4. Given a simplicial complex K, its face poset P(K) is the set of simplices of
K ordered by the inclusion. For practical reasons, we include K as the top
element of P(K); see Figure 4.

Given a simplicial complex, we can construct a poset that collects all its homo-
topical information. Reciprocally, Alexandroff [Ale37] shows that it is possible to
go backwards. The order complex of P, denoted A(P), is the simplicial complex
whose n-faces A, (P) are the chains of length n +1 in P,

Po<p1r<--<Pn

In addition, we denote by d; the i-face map defined by deleting the i-th element

in a chain,

di(po<---<pi<-<pu)=po<--<Ppi-1 <Piy1 < < P

5
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Given a chain c € A,(P), we denote by ¢, the element of P at position k for
0 < k < n. Also, given p € P, we denote by A,(P), or by A, if the poset P is
understood, the set of all chains ¢ € Ag(,)(P) such that ¢q(,) = p.

The cover relation in a poset P, denoted by <, is defined by p < ¢ if and only if
p < g and

VreP,p<r<g=p=rorq=r.

The Hasse diagram of a poset P is a directed graph whose vertices are the
elements of P, and there is a directed edge between x and y € P if and only if
x < y. In this text, we represent the cover relation as an upward edge in the

Hasse diagram.

AZ
2 /\
01 02 12

(@]
—_
N

Figure 4: The face poset of A[2].

We say that a chain c between two comparable elements p < g is unrefinable
if given two consecutive elements c;, c;.1 we have ¢; < ¢, i.e, the chain can be
written

p<C <XC<-<Ch1=<¢g.

For every p € P, we denote by P« the sub-poset of P consisting of those g € P
such that g < p.
P<pi=1qeP|q<p}

We can similarly define P~ ,, P~,, P<p and P<y. If p,q € P, we denote by [p, q]
the subposet of P given by:

[pal ={reP|p<r<gq}="PzpnPg
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For Q a subset of P, we denote by (Q) the sub-poset of P whose elements are

lesser than some element in Q; that is,

(Q):={peP|p<qforsomeqgeQ}= Uqu.
7€Q

If P is a linear order, we say that a subset S — P is an initial segment if it can be
expressed as S = (p) = P<p for some p € P. Given |, K a pair of subsets of P,
we write | < K if, for every j € ], there exits k € K such that j < k. In the same
way, we define | < K, ] < K, ] > Kand | > K. A subset Q of a poset P is upper
convex if P>, < Q for every x € Q.

We say that a poset P is bounded if it has a maximum 1 and a minimum 0. For a
bounded poset P we denote by P the subposet P\{0, 1}, and for a non-necessarily
bounded poset P, we let P denote the (unique) minimal bounded poset such
that P = P. If P is bounded then P = P. A finite poset is said to be pure if
all maximal chains have the same length. Notice that a pure poset satisfies the
Jordan-Dedekind condition:

All unrefinable chains between two comparable elements
have the same length.

A poset is graded if it is pure and bounded. A graded poset P admits a canon-
ical filtration d: P — IN defined by d(p) equal to the (common) length of an
unrefinable chain from 0 to p. This filtration verifies the following property:

p=<q = dig=dp)+1
The length of a filtered poset is the supremum of its filtration:
length(P) = sup{d(p) | p € P}.

If P is a graded poset, its length coincides with the value of d at 1, this is,
length(P) = d(1).
Example 1.7. Given a simplicial complex K, its face poset P(K) is a graded poset.

A poset P has the descending chain condition if there are no infinite descending
chains, i.e., for every descending chain:

7
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Figure 5: A filtered but not pure poset.

there exits N € IN such that a, = a,1 for every n > N. For short, if P has the
descending chain condition, we say that P is a DCC poset.

Example 1.8. Notice that a filtered poset is a DCC poset, but the converse is not
true. Let P be a subset of IN x IN defined by:

P={nr)elNxN|n=r=0o0rnz=r>0}
equipped with the order relation

n=r=0
(n,r) < (n',7) iff
n=n"and ' <r.

See Figure 6. An order-preserving map d: P — IN implies a bound in the set of
natural numbers. Therefore, P is a DCC poset that is not filtered.

Figure 6: Hasse diagram of the poset described in Example 1.8.

These three conditions verify the following inclusions:

Graded < Filtered < DCC.
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1.1

Shellable complexes are of interest in several areas of mathematics as algebraic
topology, commutative algebra, and combinatorics. They were popularised by
Bjorner [Bjo8o] to study Stanley-Reisner rings since shellable complexes are
Cohen-Macaulay. Moreover, being shellable implies some important algebraic,
topological, and combinatorial properties for the complex, see [BW82, Bj684].

A simplicial complex is said to be pure if it is finite and its maximal faces

(facets, for short) have the same dimension.

Definition 1.1.1. A shelling for a pure simplicial complex K is a linear order on its
facets F| « F; « --- « Fy such that the simplicial complex

k—1
Fk M (U Fz)
i=1

is a non-empty union of facets of 0F, for every k = 2...,n. A simplicial complex
is said to be shellable if it admits a shelling. A poset P is shellable if its order
complex A(P) is a shellable complex.

Figure 7: A non-example of a shellable Figure 8: A shellable complex of dimen-
complex. sion 1.

Example 1.1.2 ( [Bjo9gz2] ). Let K be the simplicial complex of vertices {a,b, c,d, e}
and facets

A =1{b,d,e}, B ={c,ed}, C={cb,e}
D = {a,c,d}, E ={a,b,c}, D ={a,c,d},
F ={c,b,d}.

see Figure 9. Then, the ordering A « B « C « D « E « F is a shelling for K.

9
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b
Figure 9: A shellable complex [Bjo92, Figure 1].

Example 1.1.3 (Bruhat order). A Coxeter group is a pair (W, S) where W is a group
and S is a distinguished set of generators of W such that

W =(S|st =1, (s;5;)" =1fori# j)

where m;; = 2,3,...% for i # j. Finite Coxeter groups arise as Weyl groups of
root systems and the symmetry groups of regular polytopes and tessellations.

The elements of W can be expressed as words in S, i.e., for any w e W,
W = 81S2...5k s; € S.

If k is the shortest possible length for such an expression of w, then it is defined
as the length of w, denoted by /(w) = k. The set of reflections of the Coxeter group
is defined as the set of conjugates of S:

T={wsw'eW|seS, we W}

The group W admits a partial order, the Bruhat order, given by w < w' if there
exists reflections t1,ty,...,t, € T such that w’ = wtity...t, and

Hwtity ... tiq) < l(wtity ... t) fori=1,2...,m.

Then the order complex of (W, <) is shellable. We refer the reader to Bjorner-
Brenti’s Book [BBos], and Bjorner-Wachs” paper [BW82] for further details.

Example 1.1.4 ([BM71]). The boundary of a convex polytope is shellable.

The most relevant homotopical property of shellable complexes is that they
have the homotopy type of a wedge of spheres.
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abab = baba
aba bab
ab ba
a b
e

Figure 10: Bruhat order of I;(4) = (a,b|a® = b? = ¢, (ab)* = e).

Theorem 1.1.5 ([Bj684, Theorem 1.3]). Let K be a shellable d-dimensional
complex. Then, there exists h € IN such that |K| has the homotopy type of a wedge
of h d-dimensional spheres,

h
K| ~\/ 5.
i=0

Deciding if a poset is shellable involves two problems. First, we do not have
an intrinsic notion of a shellable poset; we need to compute the order complex
of the given poset. The second problem is that deciding if a pure d-dimensional
complex is shellable is NP-complete for d > 3 [GPP " 19]. Despite this problem, in
the 8os, notions that imply the shellability of posets were presented by Bjorner
[Bjo8o] and Bjorner-Wachs [BW82]. However, Goaoc et al., proved in the same
paper [GPP " 19] that CL-shellability of a poset, one of the notions presented by
Bjorner-Wachs (see Definition 1.1.7), is also NP-hard for d > 4.

Let P be a graded poset of length nn and £(P) = P x P be the set of relations
induced by the covering relation,

EP):={(x,y) e PxP|x =<y}

An edge labelling of P is map A: £(P) — Z. Given an edge labelling A, each
unrefinable chain ¢ = (¢p < ¢ < -+ < ¢x) can be associated with a k-tuple:

o(c) = (Mco,c1), Acy,c2), -+, Alck—1, Ck)-

11
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We say that c is an A-increasing chain if the k-tuple o(c) is increasing; this is,
Alco,c1) < Alcy,c2) < -+ < ACk—1,Ck)

This edge labelling allows us to order the maximal chains by the lexicographic
order induced by . We denote this order relation by «, or just « if the edge
labelling is understood.

Definition 1.1.6. An edge labelling is called an EL-labelling (edge lexicographical)
if for every interval [x,y] in P,

1. there is a unique increasing maximal chain ¢ in [x, y|, and
2. ¢ « ¢ for all other maximal chains ¢’ in [x, y].

A graded poset that admits an EL-labelling is said to be EL-shellable.

'\/\3/\/

Figure 11: EL-labeling of the face lattice of a square [BW83, Figure 2.1].

Bjorner-Wachs [BW82] presents another notion that implies the shellability of
the poset. For a graded poset P of length 1, we define £*(P) to be the set of
edges of maximal chains of P,

EX(P):={(c,x,y) | x <y,ce A(P),x,y € c}.

A chain-edge labelling of P is a map A: £*(P) — Z that satisfies the following
condition: If two maximal chains

c=0<c; < <cpy<Dand =0 <cj<---<c, ;<1
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coincide along their first d edges, then their labels also coincide along these edges,
ie,ifc;=cifori=0,...,d, then:

A<C/ Ci—1, Ci) = A<C/ C;—l’ C:)

Let A be a chain-edge labelling of P. Each maximal chain
c=0=<c1 < <cp1=<1)

of P can be associated with a unique n-tuple:

A A

o(c) = (Mc,0,c1),A(c,c1,¢2),...,A(c, c1,1)).

Given x < y € P and r a unrefinable chain from 0 to x, we say that the pair
([x,y], ) is a rooted interval with root r and we denote it [x, y],. If ¢ is any maximal
chain of [x,y], then r U c is a maximal chain of [0, y]. For a maximal chain c in a

rooted interval [x, y], has a unique k-tuple

or(c) = (M, x,¢1), M, c1,¢2), ..., AC, ek, )

where ¢’ is any maximal chain from 0 to 1 that contains U c. We say that a maxi-
mal chain ¢ in a rooted interval [x, y], is increasing if the k-tuple oy(c) is increasing.
If ¢; and ¢, are maximal chains of [x,y|, then c; is said to lexicographically precede
cp in [x, y]r if 0y(c1) lexicographically precedes o;(cz), and we denote it by ¢ « ¢
in [x,y].

Definition 1.1.7. A chain-edge labelling A is called a CL-labelling if for every
rooted interval [x, y], in P,

1. there is a unique increasing maximal chain ¢ in [x, y],, and
2. ¢ « ¢ for all other maximal chains ¢ in [x, y]s.

A graded poset is said to be CL-shellable if it admits a CL-labelling. A graded
poset P is said to be dual CL-shellable if P°P, the poset obtained from P by the
reverse order is CL-shellable.

The relations between these notions can be summarised in the following
diagram:

EL-shellable = CL-shellable = shellable.

13
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G5 )

Figure 12: A CL-labeling [BW83, Figure 2.2].

These inclusions are strict since there are examples of CL-shellable posets that
are not EL-shellable [Li19] and results that imply the existence of shellable posets
that are not CL-shellable [Wal85]. However, being CL-shellable and shellable are

close conditions.

Theorem 1.1.8 (Bjorner-Wachs [BW&3, Teorem 4.3]). Let K be a pure polyhedral
complex. The face poset P(K) is dual CL-shellable if and only if K is a shellable
complex.

Later, Bjorner-Wachs characterise CL-shellable posets in terms of their atoms
[BWE3]. However, since we are interested in the opposite category of a CL-
shellable poset, we present here a characterisation of dual CL-shellable posets.
An atom a of a graded poset P is an element that covers the minimum 0 < a.
Dually, a coatom h is an element covered by the maximum h < 1.

Let P be a graded poset, p € P and « be a linear order in P<,. Given h < p,
we denote by C«(h) to be the elements of P_;, that are covered by some i’ « h,
this is,

C«(h) :={x <h|x < I for some h' « h}.

Definition 1.1.9. Let P be a graded poset. A recursive coatom ordering for P is, for
every unrefinable chain c that ends in 1, a linear order «. on the set of coatoms
of P<,, such that:

cL1 if co # 1, the set Cq 4o (cp) is an initial segment of the linear ordered set
(P<eps <c), i, if x € Coy (o), and y € Py \Cey ( (c0), then x . y; and

cL2 for every pair of coatoms h «. h' € P, if there exists y € P, such that
y < h, I, then there is a coatom h" « I’ of P<, and an element z € P,
such thaty <z < h", 1.
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By abuse of notation, we say that « is a recursive coatom ordering if the family
{(P<cys <c)}c is a recursive coatom ordering where ¢ ranges over the family of all
unrefinable chains that end in 1. Moreover, if the chain c is just the trivial chain,

we denote «, the linear order «..

Originally, Bjorner-Wachs introduced the property of admitting a recursive coatom
ordering instead of defining what a recursive coatom ordering is. However, since
we introduce techniques that use the recursive coatom ordering explicitly, we

prefer to define it properly.

Remark 1.1.10. Let « be a recursive coatom ordering, ¢ be an unrefinable chain
that ends in 1 and 1 < ¢y. we denote by C.(h) the set C_(h). If the chain c is
understood, we denote it by C(h).

Figure 14: An example of a non CL-
shellable poset; see [BW83, Fig-
ure 3.1].

Figure 13: An example of a CL-shellable
poset; see [BW83, Figure 3.1].

Proposition 1.1.11 ([BW82]). A graded poset P is dual CL-shellable if and only if there
exists a recursive coatom ordering for P.

In general, given a dual CL-shellable poset P with recursive coatom ordering
«, and two chains ¢, ¢’ both ending in 1 and with the same source, the linear
orders «, and «, may not coincide. Li [Li20] characterise EL-shellable poset as

the ones for which these orders coincide.

Proposition 1.1.12 ([Li20, Proposition 2.1.1]). Let P be a dual CL-shellable poset.
Then P is dual EL-shellable if and only if there exists a recursive coatom ordering «
such that for every p € P, the linear ordering (P<p, <) is independent of the chain
c=p<---<1

15
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Next, we introduce some properties of CL-shellable poset that we will need
later.

Lemma 1.1.13. Let P be a dual CL-shellable poset with recursive coatom ordering «,
and Q be the subposet of P consisting of the objects of degree d(P) — 1 and d(P) — 2.
Let x1 « xq be a pair of coatoms of P such that there exists p € P<yx, N P<y,. Then,
there exists a sequence of coatoms {z, },eN such that:

1. the sequence is connected in Q N Py,
2. it starts in xq, this is, zg = xo, and
3. there exists N € IN, such that z, = z,_1 < x1 foralln > N.

Proof. We define this sequence recursively. First, we set zp := xp and given {zk}Z;&
verifying (1) and (2), we define z; as follows:

If z,,_1«x1, then we define z, := z,,_;. Otherwise, by the induction hypothesis,
p < x1,Zy—1. Therefore, By CL2 (see Definition 1.1.9), there exists at least a
coatom y and q,,_1 € Q such that p < ¢g,-1 < y,z,—1 withy « z,,_1. We define
z, to be any element y with this property. By construction, z, is connected in
Q n Py with z,_1 by g,_1. By the induction hypothesis, there exists a zigzag
that connects z, with zg in @ nP-,. So, we can extend this zigzag, obtaining a
connected sequence {zy}}_:

Finally, since the set of coatoms between x; and xg is finite, there exists N € IN
such that z,«x; for all # > N. H

Lemma 1.1.14. Let P be a dual CL-shellable poset, and Q be the subposet of P consisting
of the objects of degree d(P) — 1 or d(P) — 2. Then, Q is final in P\{1} and in P.

Proof. If d(P) = 0 the condition is empty and for d(P) = 1,2 we have Q = P\{1}.
Then, we assume that d(P) > 2. We will only prove that Q is final in P; the other
case is analogous.

Let « be a recursive coatom ordering for P. First, notice that for every p € P,
the comma category (p/Q), see Definition 2.3.2, is non-empty. This holds since
p < h for at least a coatom /, and by definition, Q contains every coatom of P.
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Next, we check that p/Q is connected. Let xq, x; € Q such that p < xg, x;. We
can assume without loss of generality that x1, xo are coatoms and x; « xp. Now,

we construct a connected sequence {x,} of coatoms that connects x; with xj.

Given x,,_1 and x,,_p we construct x, as follows: If x,,_; = x;,,_», then we define
Xp = Xp—1. Otherwise, we apply Lemma 1.1.13 to x,_1 and x,_, obtaining a
sequence of coatoms {z,} such that is connected in Q n P, it starts in x,,_», and
a natural number N € N such that z,,, = z,,_1 < x,_1 for all m > N. Then we
define x, := z, for any m > N. By finiteness of the coatoms set, this sequence

eventually ends; this is, for some ng € IN, x;, = x;,41 for all m > ny.

Xit2 Xi+1 zZ3 2y Z1 X

Figure 15

By construction of the sequence, the odd elements x;,.1 are connected with
x1, and the even ones are connected with x (see Figure 15), and as we said
before, there is some n such that x,, = x,,.1, that means that both subsequences

are connected. O]

Definition 1.1.15. Let P be a dual CL-shellable poset with recursive coatom
ordering «, and ¢ be an unrefinable chain that ends in 1. Given Q a subset of
coatoms of P<.,, we say that c makes Q compatible with the recursive coatom ordering
« if Q is an initial segment of the linear ordered set (P, «¢). A subset of
coatoms Q < P, is said to be compatible with the recursive coatom ordering « if
there exists a chain ¢ = (co < ¢; < --- < 1) that makes Q compatible with «.

Lemma 1.1.16. Let P be a dual CL-shellable poset with recursive coatom ordering «,
p be an object of P and Q be a subset of coatoms of P<, compatible with the recursive
coatom ordering. Then, (Q) u {p} is a dual CL-shellable poset of length d(p).

Proof. Let c be an unrefinable chain from p to 1 that makes Q compatible with «.
Then, the family {({Q) <cly «!,)}¢ is a recursive coatom ordering, where ¢’ ranges
in the family of all unrefinable chains ¢’ in (Q) that ends in p and ({Q) <cly «!,)is
the linear ordered set (P <chy et <do(c))- O

17
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1.1.1

A lattice is a poset such that any two elements x and y have a maximum, x v y,
and a minimum, x A y. A geometric lattice is a graded lattice such that the degree
function verifies:

dix ry)+d(x vy) <d(x)+d(y). (2)

If P is a geometric lattice and p € P, then P, is again a geometric lattice because
if x,y € P<p, then x v y < p, so Equation (2) holds in P;. Every linear ordering
on the atoms of a geometric lattice induces a recursive atom ordering [BW&3,
Theorem 5.1]. Therefore, every geometric lattice is CL-shellable. For practical
reasons, we consider the reverse order relation in the geometric lattices to obtain
dual CL-shellable lattices. An example of a geometric lattice is the intersection
lattice of a hyperplane arrangement.

Let V be a finite-dimensional vector space over a field k, let H = {hy,..., h,}
be a finite set of linear hyperplanes in V. The arrangement lattice Ly, has elements
all possible intersections of hyperplanes in H and is ordered by the inclusion
relation. The graded lattice structure is given by:

0=(1h 1=V, d(x)=dim(x) - dim(0),
heH
XAY=XxNY, xvyzﬂ{zeLH | x vy <z}
Remark 1.1.17. Generally, 0 is not the trivial vector space, 0 # 0.

With this lattice structure, Ly is a dual CL-shellable lattice. In a geometric

lattice L, a collection of coatoms S is said to be independent if for every T < S, we

/\S</\T;

otherwise, we say that S is dependent. A basis of coatoms is a maximal independent

have

subset.

Example 1.1.18. Consider in R? the following hyperplanes h; = 0 = y — z,
h)=0=z,h3 =0 =y+zand hy = 0 = x, and let L = Ly the arrange-
ment lattice of H = {hy, hy, h3,hs}. The set {hy,hy, h3} is dependent in L since
hy " hy = hy nhy nhs, and {hy, hy, hs} is a basis, see Figure 16.

Lemma 1.1.19. Let V be a finite-dimensional k-vector space and H be a finite set of

hyperplanes. A subset {hy,hy, ..., hn} of coatoms of Ly is independent if and only if the
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m0=x
O=y-z
0=z
A m0=y+z

Figure 16
vectors f1, fa, ..., fu are independent in V*, where f; is a generator of the annihilator of
h, this is, an(h;) = {g€ V* | g(v) = 0 for all v € h;}.

Proof. We prove one implication; the other one is analogous. Assume by con-
tradiction that {hy, hy, ..., h,} is an independent set of coatoms and there exists
A, A, ..., A € kwithsome A; # Osuchthat A1 f1 +Axfo+ -+ Ay fn = 0. Without
loss of generality, assume that A; = 1. Then, we have f; = —(Aafo + - + Anfau).
In particular,

n
ker fi = ker —(Aafo + -+ Anfu) o [ ker fi.
i=2

This implies that

/n\hi =h A </n\hn> = ker f1 n (ﬁkerﬁ) = ﬁkerf,- = /n\hi,
i=1 i=2 i=2 i=2 i=2

which contradicts that {hy, ..., h,} is an independent set of coatoms. l

Corollary 1.1.20. Let V be a finite-dimensional vector space and H be a finite set of
hyperplanes. If B < H is an independent set of coatoms of Ly, then #B < d(V).
Moreover, #B = d(V) if and only if B is a basis.

Proof. This follows directly from Lemma 1.1.19 O]

Lemma 1.1.21. Let V be a finite-dimensional vector space, H be a finite set of hyperplanes,
and L be the arrangement lattice of H. Let B be a basis of L and hy € H\B. Then, there
exists a subset By of B such that,

1. By u {ho} is a basis of L; and

19
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2. the set B’ = {h n hy | h € By} is a basis of the geometric lattice Lp,.

Proof. By Lemma 1.1.19, (1) is reduced to the well-known Steinitz’s Lemma about
tinding a base of a vector space in a set of generators.

Notice that (2) is equivalent to
(2") B’ is an independent set and #B’ = #B,.

To prove statement (2”), we follow the next linear algebra argument. Let hy, ..., h,
be the elements in By, and, for every i = 0,1,...,n, let f; be a generator of
an(h;). Since By is an independent set of coatoms, we can assume without loss of
generality that {fo, f1,..., fx} is a basis of V*. If not, consider the quotient V* /O.

First, notice that (h)* can be identified with the quotient V*/(fy), and a basis
of this quotient is provided by the set {f1 + (fo), fo + {fo), - .. fu + {f0)}. Next, by
direct computation, we have an(hy n ;) = (fo + fi). By Lemma 1.1.19 under the
identification (hg)* =~ V*/{fy), the set {ho n h; | h; € By} is an independent set and
it has exactly |By| elements. O

Lemma 1.1.22. Let V be a finite-dimensional vector space, and let H be a finite set of
hyperplanes. For every W € Ly, the meet of the hyperplanes of W is the minimum of Ly,

A w=0.

Proof. Ly, is an arrangement lattice, and hence we can write W as a finite intersec-

ie.,

tion of hyperplanes in H = {hy, hy, ..., hy}. We assume without loss of generality
that W = AX_, h;. Note that for every j = k+1...m, W A h; < W. Then,

m m k m

N\ WAl)=Wna(/\ )

i=k+1 i=k+1 i=1 i=k+1 i=1

I
>
=
>
>
=
I
>=

=
I
[@»)
]

Definition 1.1.23. Let L be a geometric lattice. A basis-like recursive coatom ordering

for L is a recursive coatom ordering « for L such that:

cL3 For every unrefinable chain c that ends in 1, an initial segment of (P, <)
is a basis of the geometric lattice P, this is, there exists h € P, such that
the set {h' € P~, | W'« h} is a basis of P«,.

Lemma 1.1.24. Let V be a finite-dimensional vector space and H be a finite set of

hyperplanes of V. Then, Ly, admits a basis-like recursive coatom ordering.
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Proof. For short, let L be the arrangement lattice of H. First, CL2, see Defini-
tion 1.1.9, in an arrangement lattice is trivial. For every ¢y € L, every h, 1’ < ¢
with the property that there exists y < I, i/, we have: y <h A h' < h, .

So, we define for every unrefinable chain c that ends in 1, a linear ordered set
(L<cys <c) that verifies CL1 and CL3. We proceed by induction on the length of c.
For ¢ = (1), the trivial chain, we set on the coatoms of L any linear order with the
property that an initial segment is a basis. This is, we choose a basis B of L, and

we define «, to be any linear order for L, with the property:

x e Band ye L.,\B, then x <. y.

Now, assume that «, is defined for every unrefinable chain of length less than
n, and it verifies CL1 and CL3. Let ¢ be an unrefinable chain of length n. To

shorten the notation, we rename h = ¢y and ¢’ := dy(c).

We have two options either A C.(h) = 0 or A Co(h) > 0. In the first case, there
exists a basis B of L¢j, whose elements belong to C./(h). Then, we define «. to be

any order such that both B and C./(h) are initial segments of (L, ), i.e.,
o for every x € B and every y € C./(h)\B, x < y; and
o for every x € C./(h) and every y € P_;,\Cu(h), x < y.

Otherwise, we first show that C.(h) is an independent set of coatoms. Let T
be a proper subset of C./(h). By definition of C.(h), every w € C.(h) can be
expressed as w = h A h' for some ' « h. Let S = {I' € P, | W« h} and
T ={h' eS| h AheT}u{h}. Therefore we have:

AT = ﬂ€T<hmh’>= (( ﬂeTh’)mh (1 W= AT

(halt) hoh') WeT’

ANCony= () (hmh’)( N h’)mhﬂh’/\s.
(h) ( (h)

(hah')eC, hal)eC, Wes

Finally, by the induction hypothesis, an initial segment of (L~.,, < ) is a basis,
and S is an initial segment with /\ S > 0. So, S is independent, and T’ < S, then

AT=/AT</\S=/A\Clh).

we conclude:

21
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Therefore, C.(h) is independent. In this case, /A Co(h) > 0, we extend C.(h) to
a basis B of L;. We define «. to be any order that both B and C.(h) are initial
segments, this is:

o for every x € C(h) and every y € B\Cu(h), x < y; and
o for every x € B and every y € P_;\B, x <.

Therefore, « is a basis-like recursive coatom ordering. O
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Chapter 2

LIMITS AND COLIMITS

To motivate the notion of categorical limit, we present an intentionally non-
rigorous example that covers the intuition of this concept. In Calculus, the limit
of a sequence {x,} seems to be the last element of this sequence. For example, if
we consider the sequence {1/n},c7+, our intuition tells us that the last element of
this sequence should be 0. In some sense, if we consider Z* and R as a category
induced by the standard order, this sequence defines a (contravariant) functor,

x: (Z*)°P — R, that we can represent as the following diagram:
o ln— 1413 51/2 1

This way, 0 is the "closer" element from the left to this sequence; this is, for every
r € R such that r < 1/n for all n € Z*, we have that r < 0 < 1/n, with more
technical words, 0 is the terminal object with this property. This is the concept of
categorical limits.

In this chapter, we recall the definition of limit from a theoretical point of
view, and we give some examples of limits and computation tools for functors

taking values in Modg. Later, we dualise these concepts to introduce the notion
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of colimit. Finally, we define the concept of a Kan extension and how limits and

colimits help to compute them.

2.1

Let C be a small category, M be a category non-necessarily small, and M € M.
We denote by M the constant functor on C, this is, the functor M: C — M, that
M(c) = M, forall ce C; and M(c — ¢’) = Idy, for all (c — ¢’) € C.

Definition 2.1.1. Let M be a category, C be a small category and F: C — M be a
functor. A cone over F with vertex M € M is a natural transformation 77: M — F.
That is, a cone over F is an object M € M, the vertex, together with a family of
morphism in M, {;: M — F(i)};cc, such that for every map u: i — jin C, the

triangle

commutes. A limit for F, if it exists, is the terminal object in the category of cones

over F.

Theorem 2.1.2. Let M be a category, C be an small category, and F: C — M be
a functor. A limit for F, if it exists, is unique.

Proof. This holds directly by the universal property of terminal objects. O

We denote the vertex of the limit for a functor F: C — M by lim¢ F or just
lim F if the index category is understood. It is common to use the term the limit
of F to refer to lim F itself rather than to the vertex of the limit.

Definition 2.1.3. Let M be a category. We say that M is complete or that M has
all small limits if, for every small category C and every functor F: C — M, the
limit of F exists.

Example 2.1.4. The categories of sets Set, topological spaces Top, and R-modules
Modp are complete.
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Definition 2.1.5. Let M be a category and Z be a discrete category. The limit of a
functor X: Z — M, if it exists, is called the product of the family {X;};c7, and it is
denoted by:

[ [Xi:=limX.

ieZ z
Example 2.1.6. In some categories, products do not always exist. For example,
in the case where M is a discrete category, there does not exist any non-trivial
product in M.

Example 2.1.7. In the categories of sets, topological spaces, and R-modules, the set-
theoretical product is a categorical product. More precisely, for any small discrete
category Z and a functor F: Z — Set, Z — Top, or Z — Modg, the set-theoretical
product [ [;.7 F(i) together with the projection maps 7t;: [ [,z F(i) — F(j) form a
categorical product. The projections are part of their respective categories. The
product topology is used to define the product of topological spaces, while the
algebraic structure is given component-wise for R-modules. In both cases, the

projections belong to their respective categories.

Example 2.1.8. Let P be a poset, and x,y € P. The product of x and y, if it exists,
is the greatest lower bound or meet. We say that P is a meet-semilattice if products

always exit in P.

Definition 2.1.9. Let M be a category, P be the poset with three objects b < a > ¢,
and X: P — M be a functor. The limit of X, if it exists, is called the pullback of
the diagram:

X

|

Xb —_— Xa,

and it is denoted by:
XC XX, Xb = 1171;IIX

We finish this section by showing some computation techniques.

Example 2.1.10. Let R be a commutative ring with identity, and let C be a small
category. Given a functor F: C — Modg, we form the product [ [, F(d), which
is the set of tuples (x.), where each x, € F(c). For an object c € C, we have a
projection map 7.: [ [0 F(d) — F(c), defined by m.((x;)) = x.. However, the
collection of projection maps {7t;}.c¢c does not form a cone unless C is a discrete
category.
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To construct a cone over F, we define a sub-module L < [ [, F(d) consisting
of tuples (x.) that are compatible in the sense that for every morphism ¢ — ¢’ in
C, the morphism F(c — ¢’) sends x. to x., i.e.,

L:= {(xd) € HF(d) | for every ¢ — ¢’ € C,F(c — ') (x.) = xc’} .
deC

The vertex L together with the projections {7t.: L — F(c)} form a cone over F, so

it only remains to show that it is the terminal cone.

Let v: M — F be a cone with vertex M. Then, there exists a unique R-linear
map ¢: M — [ [, F(d) such that v, = 71, o ¢ for every object c € C.

M —" Tiee F(@)

e

F(c).

Since v is a natural transformation, it follows that ¢ preserves the compatibility
of tuples. Hence, ¢(M) < L, and we have a factorisation M — ¢(M) — [ [ F(d)
of the cone v. Therefore, L is the limit of F.

Example 2.1.11. Let R be a commutative ring with identity, and let C be a small
category. Consider a functor F: C — Ch(R), where Ch(R) is the category of
unbounded cochain complexes of R-modules.

The limit of F can be computed degree-wise. That is, the limit of F can be

written as follows:
lim F: co. — > limF! — 5 limFf —— limFi*! —— .

where lim F! is the limit of the functor F: C — Modg.

Moreover, the differentials lim F'~! — lim F’ are obtained by factoring the cone
induced by the composite of the projection followed by the differential through
lim F?,

lim FF —— Fi(c)

A

| |

lim Fi=1 —— Fi=1(c).
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Definition 2.1.12. Let C be an small category, and F: C — Modg be a functor.
The support of F, denoted by supp(F), is the full subcategory of C spanned by
the objects ¢ € C such that F(c) # 0, i.e.,

supp(F) = {ce C | F(c) # 0}.

Proposition 2.1.13. Let P be a poset, and F: P°P — Modg be a functor. Let B be a
subposet of P containing the support of F. If B is upper convex, then

IimF ~1lim F.
B P

Proof. We prove this isomorphism directly by the definition of limit as a universal
object. Let #: limg F — F|p be the limiting cone of F|g. Because the support of F
is contained in B, the limit limpg F is the vertex of a cone ¢: limg F — F over F,

defined as follows:

For p € P, we have

0 otherwise.

8,(x) i— {qp(x) ifpeB

Moreover, the restriction morphism induces a morphism r: limp F — limg F

such that the following diagram commutes:

lil’np F

{

limg F — F.

Thus, by the universal property of limit, we conclude that r is an isomorphism. [

2.2

Definition 2.2.1. Let M be a category, C be a small category and F: C — M
be a functor. A cocone over F with vertex M € M is a natural transformation

29
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n: F— M, ie., an object M € M, the vertex, together with a family of morphism
in M, {5': F(i) — M}jcc, such that for every map u: i — j in C, the triangle

commutes. A colimit for F, if it exists, is the initial object in the category of

cocones over F.

Theorem 2.2.2. Let M be category, C be an small category, and F: C — M be a
functor. A colimit for F, if it exists, is unique.

Proof. This holds by the universal property of initial objects. O

If it exists, we denote the colimit of F: C — M by colim¢ F or just colim F if
the index category is understood.

Definition 2.2.3. Let M be a category. We say that M is cocomplete or M has
all small colimits if, for every small category C and every functor F: C — M,
the colimit of F exists. We say that M is bicomplete if M is both complete and
cocomplete.

Example 2.2.4. The categories of R-modules, sets, and topological spaces are
bicompletes.

Definition 2.2.5. Let M be a category and 7 be a discrete category. The colimit
of a functor X: 7 — M, if it exists, is called the coproduct of the family {X;}icz,
and it is denoted by:

|_| X; = colIim X.

i€l
Example 2.2.6. The coproduct in the category of R-modules is the direct sum,
where the algebraic structure is performed component-wise. However, in the
categories of topological spaces and sets, the coproduct is the disjoint union. For
topological spaces, the disjoint union is equipped with the weak topology.

Example 2.2.7. Let P be a poset, and x,y € P. The coproduct of x and v, if it exists,
is the least upper bound or join. We say that P is a join-semilattice if coproducts

always exit in P.
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Definition 2.2.8. Let M be a category, P be the poset with three objects b > a < ¢,
and X: P — M be a functor. The colimit of X, if it exists, is called the pushout of
the diagram:

X, — X.

|

Xp,

and it is denoted by
Xeuyx, Xp = c07lDimX.

Example 2.2.9. Let R be a commutative ring with identity, C be a small category,
and F: C — Modpg be a functor.
We form the coproduct @, . F(d), which is, as we said before, the direct

sum of the R-modules. Given an object ¢ € C, we have an inclusion map
lc: F(c) = @ ec F(d), defined by

(1e(x))y = x ifc=d

0 otherwise.

Analogous to the limit case, the collection of inclusion maps {i.}.¢ does not form
a cocone unless C is a discrete category. Now, to construct a cocone over F, we

define a quotient R-module

C= (@ F(d)) /R

deC

where R is the submodule generated by elements of the form x. — F(c — ¢’)(x,),
for all morphisms ¢ — ¢’ in C and all x. € F(c). Then, we have a canonical
projection map p.: F(c) — C, defined by p.(x) = [ic(x)], where [—] denotes the
equivalence class in C. The collection of projection maps {p}.cc form a cocone

over F.

Moreover, if v: F — M is another cocone with vertex M, then there exists a
unique R-linear map ¢: @;c¢ F(d) — M such that v, = ¢ o1 for every object

ceC,
F(c)

Y

@dec F(d) — M.
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Since v is a natural transformation, it follows that ¢ preserves the equivalence
classes. This implies that ¢ factorizes through C, and hence, C is the colimit of F.

Example 2.2.10. In a similar way to the situation with limits, we can compute
colimits in the category of cochain complexes degree-wise; this is, the colimit
of a functor F : C — Ch(R) is given degree-wise by the colimit of the functors
F': C — Modg. Furthermore, the differentials in the colimit are induced by the
differentials in each object c € C of the cochain complex F(c).

2.3

Kan extensions are a way to extend functors through another one. Let D be a
category, C be a subcategory of D and i: C — D be the inclusion functor. Given a

functor F: C — M, a Kan extension, if it exists, is an extension of F in D
c Lt M
[ £
F
D.
That is, a Kan extension should be a kind of inverse for the restriction functor:
i*: Fun(D, M) — Fun(C, M).

Definition 2.3.1. Let p: C — D be a functor, and M be a category. The left Kan
extension along p, if it exists, is a left adjoint of the functor

p*: Fun(D, M) — Fun(C, M).

It is typically denoted by p; or Lan,. Dually, the right Kan extension along p, if it
exists, is a right adjoint of p*, denoted by p. or Ran,.

Right and left Kan extensions can be characterised in terms of limits and

colimits, and comma categories.

Definition 2.3.2. Let £, D and C be categoriesand T: £ - Cand S: D — £ be a
pair of functors. The comma category (T/S) is a category whose objects are triples
(e,d, f), whereee £, de D and f: T(e) — S(d), and whose morphisms are pairs
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of morphisms (h, k) from (e, d, f) to (¢/,d’, f') such that h: e — ¢’ is a morphism

in &, k: d — d'is a morphism in D and the following square commutes

T(k)

S(d) — S(d).

If T or S is the constant functor ¢ € C, we use the notation (¢/S) or (T/c),

respectively.

Proposition 2.3.3 ( [ML98, Theorem X.3.1] ). Let D be a small category, and M be a
bicomplete category. Then:

1. the right Kan extension of a functor F: D — M along a functor p: C — D exists
and given c € C:

(mwm@zm%meDiMy
2. the left Kan extension of F along p exists and given c € C:

(Lany, F)(c) = colim ((p/c) ) A M)

In both cases, given g: ¢ — ¢, the value of the Kan extension for g is given by the
induced map between the (co)limits.
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Chapter 3

MODEL CATEGORIES

Quillen presents in his seminal work [Qui67] the notion of model category, or
«a category of models for a homotopy theory», as a category M, endowed with
three distinguished families of morphisms called weak equivalences, cofibrations
and fibrations satisfying certain axioms, the most important being the following

two: the first one is the LIFTING axiom, given a commutative square:

AL

Ilg.

where i is a cofibration, p is a fibration, and either i or p is also a weak equivalence,

"<<T><

8
—

there exists a morphism h: B — X such that hoi = f and poh = g. The next
axiom is about FACTORISATION, every map f can be factored both, as f = poi
and as f = p’ oi’ where p, p’ are fibrations, i,i’ are cofibrations and p, i’ are also
weak equivalences.

This notion sets a very general framework to do homotopy theory without
having topological spaces involved. The main references of this section are
Dwyer-Spalinski’s survey [DS95], Hirschhorn’s book [Hiro3], Hovey’s [Hovgg],
Balchin’s [Balz1] and Riehl’s [Rie14].
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3.1

As we say in the motivation, one of the main objectives for defining model
categories is about lifting. Giveni: A — B and p: X — Y two morphism in a
category C, a lifting problem between i and p is a commutative diagram:

>

AL

;

A solution of the lifting problem or just a lift, is a morphism h: B — X such that
the resulting diagram with five arrows commutes, this is, hoi = f and poh = g.

(3)

<
N

_&,

A morphism i: A — B is said to have the left lifting property (LLP for short) with
respect p: X — Y and p is said to have the right lifting property (RLP for short)
with respect to i if every lifting problem between i and p has a solution.

Definition 3.1.1. A model category structure on a bicomplete category M is a triple
of classes of morphisms (Weak ¢, Fib r¢, Cof r):

= Weak , the weak equivalences;

— Fib y4, the fibrations; and

— Cof p4, the cofibrations.

These distinguished classes must satisfy the following axioms:

cLoseb Each of these classes is closed under composition and contains every
identity morphism.

LIFTING Every lifting problem between i and p, see Diagram (3), has (as least) a
solution if i is a cofibration and p is a fibration and either i or p is a weak
equivalence.

FACTORISATION Each morphism f in M can be factored in two ways: as a
cofibration followed by a fibration that is a weak equivalence and as a
cofibration that is a weak equivalence followed by a fibration

/\
\/
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2-0uT-3 Given two composable morphism f and g, if two of f, g and go f are
weak equivalences, then so is the third.

RETRACTS The three classes are closed under retracts; this is, if f, g are mor-
phisms in M such that

Id4

[ )

AL XT3 A

R A [

B—'sy_-",B

L T
Idg

If f is a weak equivalence (resp. fibration, cofibration), then g is a weak
equivalence (resp. fibration, cofibration).

We say that a morphism that is both a fibration and a weak equivalence is an
acyclic fibration. Similarly, a morphism that is a cofibration and a weak equivalence
is an acylic cofibration.

By abuse of notation and only if there is no confusion, we say that M is a
model category instead of M is a category equipped with the three distinguished
classes of morphisms. Sometimes, if in a category we work with many model

category structures, we name it by the sub-index.

Definition 3.1.2. Let M be a model category. An object X € M is said to be:
1. fibrant if the unique morphism X — = is a fibration; and
2. cofibrant if the unique morphism & — X is a cofibration.

Now, we present some classical examples of model category structures.

Example 3.1.3 (Strom). The category of topological spaces Top can be equipped
with a model category structure defining a continuous map f: X — Y to be:

— a weak equivalence if it is a homotopy equivalence;
< a cofibration if it is a closed Hurewicz cofibration; and

—» a fibration if it is a Hurewicz fibration.
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This model category structure is named the Strem model category on Top, for

more details we refer the reader to Strom’s original papers [Stry2]

Example 3.1.4. There is a more useful model category structure for the category
of topological spaces Top, the classical model category structure, in which a
continuous map f: X — Y is defined to be:

= a weak equivalence if it is a weak homotopy equivalence;

< a cofibration if it is a retract of a map X — Y’ in which Y’ is obtained from X
by attaching cells; and

— a fibration if it has the right lifting property with respect to all inclusions of
the form
D" — D" x {0} — D" x I.

This model category structure is due to Quillen [Qui67].

Example 3.1.5 ([Qui6ty]). Let R be a commutative ring with unit, and Ch(R) be the
category of (unbounded) cochain complexes. There is a model category structure
on Ch(R) in whichamap f: C — D is:

= a weak equivalence if it induces an isomorphism in cohomology;

— a cofibration if it is a degreewise monomorphism with degreewise cofibrant

cokernel; and
— a fibration if it is a degreewise epimorphism.

This model category structure is called the projective model category structure; see
[MP12, Section 18.5] .

Example 3.1.6 ([Qui6ty]). Let R be a commutative ring with unit, and Ch(R) be the
category of (unbounded) cochain complexes. There is a model category structure
on Ch(R) in whichamap f: C - Disa

= a weak equivalence if it induces an isomorphism in cohomology;
< a cofibration if it is a degreewise monomorphism; and
— a fibration if it is a degreewise epimorphism with a degreewise fibrant kernel.

This model category structure is called the injective model category structure.
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Remark 3.1.7. In this text, we do not distinguish between cochain complexes and

chain complexes since we are not imposing any bounded conditions on them.

However, if we have a cochain complex C with non-zero values concentrated in
non-positive degree, C' = 0 for every i > 0, we will denote it as a chain complex

by using the notation C; = C.

Proposition 3.1.8 ([MP12, Proposition 18.5.2]). Let Ch(R) be the category of cochain
complexes equipped with the projective model category structure, and C € Ch(R).

1. 0 — C is an acyclic cofibration if and only if C is a projective object in Ch(R).
2. If C is cofibrant, then C is degreewise projective.
3. If C is bounded above and degreewise projective, then C is cofibrant

Proposition 3.1.9 ([MP12, Proposition 18.5.4]). Let Ch(R) be the category of cochain
complexes equipped with the injective model category structure, and C € Ch(R).

1. C — 0 s an acyclic fibration if and only if C is an injective object in Ch(R).
2. If C is fibrant, then C is degreewise injective.
3. If C is bounded below and degreewise injective, then C is fibrant

Fibrant and cofibrant objects play a fundamental role in model category theory
as they allow us to define and study homotopy theory in a general context. If
an object is not fibrant or cofibrant, by the FAcCTORISATION axiom, there are nice

substitutes for them that are fibrant or cofibrant.
Definition 3.1.10. Let M be a model category and X € M.

1. A fibrant replacement of X is a fibrant object RX equipped with a weak
equivalence X = RX.

2. A cofibrant replacement of X is a cofibrant object QX equipped with a weak
equivalence QX = X.

3.2

The first step for defining the homotopy category is to define homotopies
between morphisms. In the context of topological spaces, we have two ways
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for defining a homotopy between two maps f,g: X — Y: The first one is by
the cylinder X x I, a homotopy between f and g is a map H: X x I — Y such
that H(—,0) = f and H(—,1) = g; the second one by the paths of Y, this is the
mapping space map(!, Y) with the compact-open topology, a homotopy between
f and g is a map H: X — Path(Y), such that for every x € X, H(x)(0) = f(x) and
H(x)(1) = g(x). In topological spaces, these definitions are equivalent, but in a

model category, these definitions need not be equivalent.

Definition 3.2.1. Let M be a model category and X € M. A cylinder object for X
is an object cyl(X) together with a diagram

XuX 72 (x) s X

which factors the folding map Idyx + Idx.

Definition 3.2.2. Two morphism f,g: X — Y in M are said to be left homotopic,
and we denote it by f L g, if there exists a cylinder object cyl(X) for X such that
the sum f + ¢g: X 1 X — Y can be extended to a map H: cyl(X) - Y

Xxux I8,y

l H -7

cyl(X).

Example 3.2.3. In the category of topological spaces, equipped with the classical
model category structure, X x I is a cylinder for X and a left homotopy between
fand gisamap H: X x I — Y such that H(—,0) = f and H(—,1) = g.

Lemma 3.2.4 ([DS95, Lemma 4.7]). Let M be a model category and X,Y e M. If X
is a cofibrant object, then Lisan equivalence relation on Hom (X, Y).

To define right homotopic maps, we must define the paths in a model category.

Definition 3.2.5. Let M be a model category and X € M. A cocylinder object or
path object for X is an object cocyl(X) together with a diagram:

X —— cocyl(X) P XxXx

which factors the diagonal map (Idx,Idx): X — X x X.
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Definition 3.2.6. Two morphism f,g: X — Y in M are said to be right homotopic,
we denote it by f ~ g, if there exists a cocylinder object cocyl(Y) for Y such that
the product map (f,g): X — Y x Y lifts to a map H: X — cocyl(Y)

cocyl(Y)

R

——— Y xY.
o
Example 3.2.7. In the category of topological spaces, equipped with the classi-
cal model category structure, Path(Y) is a cocylinder object for Y, and a right

homotopy between f and g is a map H: X — Path(Y) such that

H(=)(0) = f(=) and H(-)(1) = g(-)-

Lemma 3.2.8 ([DS95, Lemma 4.15]). Let M be a model category and X,Y € M. IfY

is a fibrant object, then ~ is an equivalence relation on Hom (X, Y)

Definition 3.2.9. Let M be a model category and f,g: X — Y be a pair of maps.
If f L g and f ~ g, then we say that f is homotopic to ¢ and we denote it by f ~ g.

Proposition 3.2.10 ([DS95, Lemma 4.21]). Let f,g: X — Y be a pair of maps in a
model category M. Then,

1. if X is cofibrant and f L g, then f ~ g; and
2. if Y is fibrant and f ~ g, then f L g.

Proposition 3.2.11 ([DS95, Lemma 4.24]). Let f: X — Y be a map in a model category
M between objects that are both fibrant and cofibrant. Then f is a weak equivalence if
and only if there exists g: Y — X such that the composites g o f and f o g are homotopic
to the respective identity maps.

Example 3.2.12. In the classical model category structure on Top, every object
is fibrant, and cofibrant objects are the ones that are retracts of generalised CW-
complex. Then, Whitehead’s theorem, see [[Hatoz, Theorem 4.5], is a corollary of

the proposition above.

Definition 3.2.13. Let M be a model category. The homotopy category Ho(M) of
M is the category with the same object as M and, given X,Y € M, the hom-set:

Homygyo ) (X, Y) = Hom(QX, RY)/ ~ .
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The homotopy category of a model category can be characterised by its weak
equivalences by formally inverting them.

Definition 3.2.14. Let M be a category and W be a class of morphism. A functor
F: M — D is said to be a localisation of M with respect to W if:

(i) F(f) is an isomorphism for each f € W; and

(i) If G: M — D’ is a functor verifying (i), then there exists a unique functor
G': D — D' suchthat G o F = G.

Given a model category M, the homotopy category Ho(M) can be charac-
terised as a localisation of M with respect to the class of weak equivalences.

Theorem 3.2.15 ( [Qui6y, Chapter I] ). Let M be a model category. There exists
a localisation functor y: M — Ho(M) that is the identity on objects and sends
weak equivalences into isomorphisms in Ho(M).

3-3

A functor F: M — D from a model category M does not always induce
a functor from the homotopy category. However, the left- and right-derived
functors play the role of the best approximation of a hypothetical functor in the
homotopy category
F: Ho(M) - M

by the respective side.

Definition 3.3.1. Let M be a model category, 7: M — Ho(M) be the localisation
functor, and F: M — D be a functor.

(@) A left-derived functor of F, if it exists, is the right Kan extension of F along v,
this is, it is a functor LF: Ho(M) — D together with a natural transforma-
tion t: LF oy — F such that for every other functor G: Ho(M) — D and
other natural transformation s: G o vy — F, there exists a natural transfor-
mation s’: F — LF such that the following diagram commutes:

Govy SN LFoy

\Flt
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(b) A right-derived functor of F, if it exists, is the left Kan extension of F along v,
this is, it is a functor RF: Ho(M) — D together with a natural transforma-
tion t: F — RF o7 such that for every other functor G: Ho(M) — D and
other natural transformation s: F — G o 7, there exists a natural transfor-

mation s’: RF — G that such that the following diagram commutes:

F

3

s'o

LF oy e, Gory.

Definition 3.3.2. Let F: M — N be a functor between model categories, and
v: N — Ho(N) be localisation functor. A total left-derived functor ILF for F is a
functor

LF: Ho(M) — Ho(N)

which is a left-derived functor for the composite y o F: M — Ho(N).
Similarly, a total right-derived functor RF for F is a functor

RF: Ho(M) — Ho(N)

which is a right-derived functor for the composite 7y o F.

The following example shows that (co)limits do not preserve weak equivalences.

Example 3.3.3. Let j,: S"~! — D" be the inclusion of the (n — 1)-sphere as the
boundary of the n-disk. Then, consider the following diagram

D" ¢ n Sn—l n s D"

|

#—— ST

Despite the horizontal arrows being weak homotopy equivalences, the pushouts
of the horizontal arrows are not homotopy equivalents.

Sn—l Jn D" Sn—l
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Definition 3.3.4. Let M be a model category, C be a small category such that the
category of functors Fun(C, M) admits a model category structure in which weak
equivalences are object-wise weak equivalences, and F: C — M be a functor. The
homotopy colimit of F is the total left-derived functor of colim evaluated on F, this
is,
hocolim F = (IL colim(—))(F).
The homotopy limit of F is the total right-derived functor of lim evaluated on F,
this is,
holim F = (Rlim(—))(F).

In the context of homological algebra, the existence of a derived functor is
given by the exactness of F and projective or injective resolution [Weig4]. Since
we work in the framework of homotopical algebra, this existence is provided by
Quillen pair.

Definition 3.3.5. Let M and A be two model categories, and L: M = N: R
be a pair of adjoint functors. We say that (L, R) is a Quillen pair if the following

equivalent conditions are satisfied:

1. L preserves cofibrations and acyclic cofibrations;
2. R preserves fibrations and acyclic fibrations;
3. L preserves cofibrations and R preserves fibrations; and

4. L preserves acyclic cofibrations and R preserves acyclic fibrations.

Lemma 3.3.6 (K. Brown [Hovogg, Lemma 1.1.12]). Let L: M = N : R be a Quillen
pair, then:

1. the left adjoint L preserves weak equivalences between cofibrant objects; and

2. the right adjoint R preserves weak equivalences between fibrant objects.

Corollary 3.3.7. Let M be a model category, and C be a small category such that the
category of functors Fun(C, M) admits a model category in which weak equivalences are
object-wise weak equivalences. If lim: Fun(C; M) 2 M: A, where A is the diagonal
functor, form a Quillen pair then:

holim F >~ lim RF,

where RF: C — M is a fibrant replacement for F. Dually, If A: M 2 Fun(C; M) isa
Quillen pair, then:
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hocolim F =~ colim QF,

where QF is a cofibrant replacement for F.
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Chapter 4

REEDY STRUCTURE

A Reedy structure on a category R is a powerful tool to induce a model
category structure on the category of functors Fun(R, M) when M is a model
category. Examples of Reedy categories are the simplex category A and its dual
A°P. Roughly speaking, a Reedy structure on a category R is a degree function
Ob(R) — N together with two wide subcategories R, the direct category, and R,
the inverse one, satisfying certain compatibility axioms. The main disadvantage
of a Reedy structure is that it does not allow the underlying category to have
non-trivial automorphism. To solve this problem, we will work with generalised
Reedy categories, following Berger-Moerdjick’s work [BM11]. However, we also
refer the reader to Hirschornn’s book [Hiro3, Chapter 15] or Reedy’s unpublished
work Homotopy Theory of Model Categories [Ree] to read about classical Reedy

categories.

Definition 4.1. A generalised Reedy structure on a small category R consist of
two wide subcategories: ﬁ, the direct category, and (ﬁ, the inverse one; and a
degree-function d: Ob(R) — N satisfying the following axioms:
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1. non-invertible morphism in R (resp. ﬁ) raise (resp. lower) the degree;

isomorphism in R preserve the degree;
2. RAR = Iso(R);

3. every morphism f of R factorsas f = goh with g e R and he R, and this

factorisation is unique up to isomorphism;
4. fffof = fforfelso(R)and f € R, then 0 is an identity; and
5.if fof = fforfelso(R)and f € R, then 6 is an identity.

A generalised Reedy category is a small category equipped with a generalised Reedy
structure.

Remark 4.2. In Berger and Moerdijk’s original work [BM11], the 5-th axiom
corresponds with the notion of dualisable generalised Reedy structure. However,
we include it in the definition because every category that appears in this work
trivially satisfies this axiom.

Example 4.3. If R is a generalised Reedy category, then R°P is also a generalised
Reedy category.

Example 4.4. If P is a filtered poset with degree function d, then it is a generalised
Reedy category with P=Pand P being the discrete category of objects in P.
In fact, this is a (classical) Reedy structure; see [Hiro3, Chapter 15]

Example 4.5. Given a finite group G, the orbit category O(G) admits a generalised

Reedy category structure setting O(G) = O(G), O(G) = Iso(G), with a degree
function d(G/H) = #H.

Example 4.6. More generally, if C is a filtered El-category with degree function d,
then it is a generalised Reedy category with C =C,and C =Iso(C).

4.1

A generalised Reedy category is not just a good tool to induce a model category
structure in the category of functors, as we will see in the next section. The
combinatorics of the generalised Reedy structure also provides a powerful tool
to construct functors and natural transformations. To simplify the discussion,
we treat the El-category C as a poset. Later, we will see how this intuitive idea
translates to the more general case.
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To shorten notation, given a generalised Reedy category C with degree-function
d, we denote C" the full subcategory of C spanned by the objects c € C of degree
d(c) < n.

Notice that C° contains no non-identity morphisms; thus, define a functor
F: C% — M is to choose for every c € C° an object F(c).

Now, we turn on the inductive machinery of the generalised Reedy structure
on C. Given a functor F: C" — M, our purpose is to extend F to C"*!. Letce C
be an object of degree n + 1 and let F(c) € M. For each object d € C" withd < ¢
we need to choose a morphism F(d) — F(c) with the additional property that for
every d' € C" d' < d < c the following diagram commutes

This is, for every object ¢ € C of degree n + 1, choose an object F(c) € M together
with a morphism:
colim F(d) — F(c).

d<c
Similarly, given two functors F, G: C — M, we can construct a natural transfor-
mation 77: F — G by induction. We start by choosing for every ¢ € C® a morphism
in M

et F(c) — G(o).
Then, given a natural transformation #: (F|cn) — (G|cn), extend it to C"*! is
to choose for every object ¢ € C of degree d(c) = n + 1, a morphism in M,
fc: F(c) — G(c) such that the following diagram commutes:

colimy_. F(d) —— F(c)

I
l e
3

colimy_. G(d) —— G(c).

Dually, if we have a functor F: (C")°P — M, extend it to a functor in C"*! is
equivalent to choose for every c € C of degree d(c) = n + 1, an object F(c) e M
together with a morphism

F(c) — lim F(d).

d<c
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Similarly, given two functors F,G: C°? — M, and a natural transformation
17 (Flen) — (Glen), extend 77 to C"**1 is to choose for every object c € C of degree
n+1, a morphism in M, 7.: F(c) — G(c) such that the following diagram

commutes:

We will devote the rest of this section to formalising these notions and extending
them to the case of El-categories.

Let R be a generalised Reedy category. For every n € IN, the category G,(R)
denotes the full subgroupoid of R spanned by the objects of degree n; the
category ﬁ(n) has objects the non-invertible arrows u: s — r in R such that

d(r) = n, and as morphism a: (s = r) — (s’ LA ) the commutative squares:

such that a( € R and a1 € Gy(R).

Dually, the category ﬁ(n) has objects the non-invertible arrows u: r — s in R
/
such that d(r) = 1, and as morphisms a: (r - s) — (' *> s) the commutative

squares:

such that a; € R and ag € G (R).

We denote by s, : ﬁ(n) — R, and s": ﬁ(n) — Gy (R) the respective domain-
functors, and by t,: ﬁ(n) — Gy(R), and t": ﬁ(c) — R the respective codomain-

functors.

Definition 4.1.1. Let R be a generalised Reedy category, M be a cocomplete
category and F: R — M be a functor. We define the latching object of F atr € R
to be

L,F := (sp)1(tn)*(F)(r) = colim X

S—r1



4.1 FUNCTORS AND NATURAL TRANSFORMATION \

where the limit is taken over the full subcategory of R /r of non-invertible mor-
phism.

Proposition 4.1.2. Let P be a filtered poset, and F: P — Modp be a functor. For every
p € P, the latching object of F at p is given by the following formula:

L,,F = colim F.

P<p

Proof. Given a poset P, and p € P, the category B/ p is equivalent to the category
of arrows q — p, i.e., g < p, and whose morphism are commutative triangles:

But this is just the category P, O

Then, for an El-category C, the inductive step described at the beginning of
the section can be reformulated to choose an object F(c) € M together with a
morphism

L.F — F(c).

Definition 4.1.3. Let R be a generalised Reedy category, M be a complete
category and F: R — M be a functor. We define the matching object of F atr € R
to be

M, F := (53)«(tn)*(F)(r) = lim X

r—s

where the limit is taken over the full subcategory of r/ R of non-invertible mor-
phism.

Proposition 4.1.4. Let P be a filtered poset, and F: P°P — Modpg be a functor. For
every p € P, the matching object of F at p is given by the following formula:

M,F = lim F.
P

<p

Proof. This result holds by dualising the argument in the proof of Proposition 4.1.2.
O
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4.2

Originally, Reedy categories were introduced to produce a new model category
structure in the category of simplicial objects in a model category M. In this
document, we use the notion of generalised Reedy categories to produce a model
category in the category of functors that allows describing higher limits in terms
of fibrant replacements; see Corollary 3.3.7.

Definition 4.2.1. Let R be a generalised Reedy category, M be a bicomplete cate-
gory, and #: F — G be a natural transformation between functors in Fun(R, M).

For every r € R we define:

o the relative latching map to be the morphism induced by the pushout:

F(r)| | LG — G(r).
L,F

o the relative matching map to be the morphism induced by the pullback

F(r) = M:F x .6 G(r).

Given a group G, we define by M the category of objects in M equipped
with a G-action. This is equivalent to the category of functors from the category
consisting of a single object » and Aut(x) = G. If M is equipped with a cofibrantly
generated model category, see [[Hiro3, Section 11.6], the category M carries a
projective model structure; this is, a G-equivariant morphism f: X — Y is a weak
equivalence or a fibration if it is, respectively, a weak equivalence or a fibration
by forgetting the G-action.

Definition 4.2.2. Let R be a generalised Reedy category and M be a model
category. One says that M is R-projective if for each object r € R, the category
MAUT) admits a projective model structure. Moreover, it is said to be R-bijective
if, for every r € R, the forgetful functor &/ : MA") — M also detects cofibrations,
i.e., a morphism f: m — m’ is a cofibration in MA"() if and only if U(f) is a
cofibration in M .
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Theorem 4.2.3 ([BM11, Theorem 1.6]). Let R be a generalised Reedy category,
and M be a R-projective model category. There is a model category structure on
Fun(R, M) in which a natural transformation : F — G is:

= a weak equivalence if, for every r € R, the morphism n,: F(r) — G(r) is a
weak equivalence in M;

— a cofibration if, for every r € R, the relative latching morphism
F(r) Ui LG — G(r)
is a cofibration in M), and
—» a fibration if, for every r € R, the relative matching morphism
F(r) = MyF xp1.c G(1)

is a fibration in M.

Remark 4.2.4. If M is a R-bijective model category, we can replace MAU() by M
in the definition of cofibrations.
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Chapter 5

HIGHER LIMITS

Let R be a commutative ring with unit, and C be a small category. The
category of R-modules has all limits and colimits; thus, these constructions define
respective functors:

lim: Fun(C,Modg) — Modg, colim: Fun(C,Modgr) — Modg.

The limit functor is left exact functor but is not right exact. Since the category
of R-modules has enough injectives, the right-derived functor of lim exists, see

[Weigs, Chapter 2]. Given a functor F, there is an injective resolution of functors:

FoD0 ot .o

Higher limits of F are the derived functors of lim evaluated in F, i.e., the coho-

mology of the cochain complex obtained from I* by applying lim:

H*(F;C) := R* lim(—)(F) = H*(lim I*).
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Dually, colim is a right exact functor that is not left exact. Then, there exists a

projective resolution:
+—>Py—>---—> P —P—F

Higher colimits of F are the homology of the chain complex obtained from P, by
applying colim:

H.(C;F) = L, colim(—)(F) = Hy(colim P,).

Classically, higher (co)limits are computed as the cohomology of a cochain
complex associated with the functor; we refer the reader to Grodal’s thesis
[Grooz, Section 2] or Aschbacher, Kessar and Oliver’s book [AKO11, Subsection
I.5.1].

In this chapter, we describe higher limits of functor indexed over filtered
El-categories using techniques from homotopical algebra instead of homological
algebra.

5.1

From now on, C will be a filtered EI-category with degree function d: C — IN.
A functor F: C — Modgy is considered as an object of Fun(C, Ch(R)) by setting:
for every c € C, F(c) to be a cochain complex concentrated in degree 0.

To describe a model category structure in the category of functor Fun(C, Ch(R)),
we use the generalised Reedy structure described in Example 4.6 for filtered EI-

categories, that is, C = Iso(C) and C = C with degree function d.

For practical reasons, we fix the convention that higher colimits are computed in
the category of covariant functors Fun(C, Ch(R)) and higher limits in the category
of contravariant functor Fun(C°, Ch(R)). This is not a strong assumption because
the notion of the generalised Reedy category, see Example 4.3, is self-dual.
Therefore, if F: C — Modgp is a covariant functor indexed in a generalised Reedy
category, then F: (C°P)°P — Modpy is a contravariant functor indexed in the
generalised Reedy category C°P.
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Theorem 5.1.1. Let C be a filtered El-category, R be a ring such that | Aut(c)| is
invertible in R for every ¢ € C, and Ch(R) be the category of unbounded cochain
complexes equipped with a cofibrantly generated model category. Then, Ch(R) is
C-bijective; see Definition 4.2.2.

.

Proof. As Ch(R) is equipped with a cofibrantly generated model category struc-
ture, for every c € C, there is a model category structure on Ch(R)Aut(C), see [Balz1,
Section 4.5], in which an Aut(c)-equivariant morphism f: C — D is defined to
be:

— a weak equivalence if f is a weak equivalence on Ch(R);
< a cofibration if f verifies LLP with respect to acyclic fibrations; and
— a fibration if f is a fibration on Ch(R).

We will prove that under the assumption that | Aut(c)| is invertible in R, a

morphism in Ch(R)Aut(©)

is a cofibration if and only if it is a cofibration in Ch(R)
by forgetting the Aut(c)-action.
Let i : X — Y be a cofibration in Ch(R)A"(¢), For every acyclic fibration in

Ch(R)A"(), p : A — B, and every Aut(c)-equivariant commutative diagram

A
1 ~|P

-

—

D-<
R

7

there exists an Aut(c)-equivariant map 4 : Y — A such thathoi = fand poh = f.
Since the class of acyclic fibrations in Ch(R)A"() and in Ch(R) are the same, we
see that i verifies LLP with respect to every acyclic fibration in Ch(R). Thus, we
conclude that i is a cofibration in Ch(R).

Conversely, let i : X — B be an Aut(c)-equivariant map which is also a
cofibration in Ch(R), and p : A — B be an Aut(c)-equivariant acyclic fibration.
Given an Aut(c)-equivariant commutative diagram,

A
' ~|p (4)

-

<

>-<
=
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the existence of a morphism h: Y — A between cochain complex such that the
hoi= fand poh = f’ follows since the class of acyclic fibrations in Ch(R) and
Ch(R)A"() are the same. The map & does not need to be Aut(c)-equivariant
map. If not, we define h:Y - A by ﬁ(y) = | Aut(c)| ! 2 igeAut(c) gh(g~'y). One

can check that  is Aut(c)-equivariant. It remains to show that & is a lift for
Diagram (4):

poh(y) =p(| Aut(r)] > gh(g™'y)) = | Aut(r) " Y gph(g~'y) =
g g

= [Aut(r)] 1Y gf (s7'y) = F(y) = ().
8

hoi(x) = Aut(r)| Y gh(g1i(x))) = | Aut(r)| ' Y ghoi(g™"y) =
8 8

= [Aut(r)] 1 gf(g71x) = f(x) = f(x).
g

Then, i is a cofibration in Ch(R)*"(), Therefore, Ch(R) is C-bijective. O

Remark 5.1.2. We only require the model category in Ch(R) to be cofibrantly
generated, and, in this thesis, we only consider the projective and injective model
category in Ch(R). Therefore, in the following, we abuse notation saying that R
is a C-bijective ring instead of Ch(R) is a C-bijective model category, whenever
Ch(R) is equipped with the projective or injective model category.

Now, we present the model category that we will use to compute higher limits.

Proposition 5.1.3. Let C a filtered El-category, R be a C-bijective ring. Then, there
is a model category structure on the category of functors Fun(C°P,Ch(R)) in which a
natural transformation y: X — Y, isa

= weak equivalence if, for every object c € C, the morphism 1.: X(c) — Y(c) induces
an isomorphism in cohomology;

— cofibration if, for every object c € C, the morphism n.: X(c) — Y(c) is a split
monomorphism with cofibrant cokernel; and

— fibration if, for every object ¢ € C, the relative matching morphism,

X(c) = Y(c) xmy McX,
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is an epimorphism.
We call this model category structure the inverse model category.

Proof. We combine the model category structure for the category of functors
Fun(C°P, Ch(R)) described in Theorem 4.2.3 with the projective model category
structure, see Example 3.1.5. Then, since | Aut(c)| is invertible in R for every c € C,

we apply Theorem 5.1.1 to describe the cofibrations. O

Corollary 5.1.4. Given a filtered El-category C, and a C-bijective ring R. A functor
F: C°? — Modp is fibrant if for every c € C, the matching morphism:

F(c) > M.F

is an epimorphism.

Proof. This holds directly by the definition of a fibrant object; see Definition 3.1.2.
Consider the unique natural transformation F — 0. Then, the relative matching
morphism at ¢ € C, described in Proposition 5.1.3, becomes F(c) — M.F. There-
fore, the natural transformation F — 0 is a fibration if and only if, for every c € C,

the morphism F(c) — M_.F is an epimorphism. O

Now, we present some examples of fibrant functors.

Example 5.1.5. Let P be a filtered poset with an initial object, and M be an

R-module. Then, the constant functor M: P°P — Mody is a fibrant functor.

Example 5.1.6. Let P be the face poset of a shellable complex. Let F: P°P — Vecty
be the functor defined on objects by ¢ — k[c]|, where k[o] is the free k-vector
space generated by the vertices of ¢; and the image of an inclusion o — T by F is

the epimorphism induced by:

s ifserT,
SE T —

0 otherwise.

Then, F is a fibrant functor.

Example 5.1.7. Let G be a group and H < G be a subgroup. Let Z be the category

with two objects 0 and 1 and:

Homz(0,0) = G Homz(0,1) = @
Homz(1,1) = {1} Homz(1,0) = G/H,
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and the composition is described by the product in G and by the left action of G
on G/H; see Example 1.2. If F: Z°° — Modg is a functor, then, by Corollary 5.1.4,
F is fibrant iff the matching morphism at 1,

F(1) — M;F,

is an epimorphism. A direct computation shows that M;F = F(0)". Then we
can conclude that a functor is fibrant iff the natural morphism e: F(1) — F(0)
is an epimorphism. This category was presented in Aguadé’s paper [Agu89] in
which he realises various polynomial algebras over IF, as the cohomology rings

of spaces constructed as homotopy colimits.

Dually, to compute higher colimits, we present the following model category

structure in the category of covariant functor.

Proposition 5.1.8. Let C a filtered El-category, R be a C-bijective ring. Then there is a
model category structure on the category of functors Fun(C, Ch(R)) in which a natural

transformation n: X — Y, is a:

= weak equivalence if, for every object ¢ € C, the morphism 1.: X(c) — Y(c) induces
an isomorphism in cohomology;

— cofibration if, for every object c € C, the relative latching morphism,
X(C) Ur.X LCY - Y(C),

is a monomorphism; and

—» fibration if, for every object c € C, the morphism X (c) — Y(c) is a split epimorphism
with fibrant kernel.

We call this model category structure the direct model category.

Proof. As in Proposition 5.1.3, we combine the model category structure for the
category of functors Fun(C, Ch(R)) described in Theorem 4.2.3 with the injective
model category structure, see Example 3.1.6. Then, since | Aut(c)| is invertible in
R for every c € C, we can apply Theorem 5.1.1 to describe the cofibrations. [

Corollary 5.1.9. Given a filtered El-category C, and a C-bijective ring R. A functor
F: C — Modg is cofibrant if for every c € C, the latching morphisms:

L.F — F(c)
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is a monomorphism.
Proof. This holds directly by dualising Corollary 5.1.4 O

Example 5.1.10. Let P be a filtered poset with an initial object, and M be an
R-module. Then, the constant functor M: P — Mody is a cofibrant functor.

Example 5.1.11. Let P be the face poset of a simplicial complex, and (D, I) be a
twin pair of functors. Thatis, D: P — Ab is a covariant functor and I: P°P — Ab

is a contravariant functor, such that:
1. for every 0 € P, D(0) = I(0), and

2. every pullback diagram:

cne —— o I(ono’) 20, I(0)
li, lj induces a commutative diagram TI(Z'/) T[(j)
o T, I(0) _Pb@, I(7).

Then, D is cofibrant in the direct model category, and I is fibrant in the inverse
model category. For more details, we refer the reader to Notbohm-Ray [[NRos5].

The following results describe how to compute higher limits via fibrant replace-

ment.

Proposition 5.1.12. Let C be a filtered El-category, and R be a C-bijective ring. Given a
functor F: C°P — Modg, then

H'(F;C) = H'(lim RF)

where RF: C°P — Ch(R) is a fibrant replacement of F in Fun(C°P, Ch(R)) with the

inverse model category; see Proposition 5.1.3.

Proof. By Lemma 3.3.6, the pair of functors A: Ch(R) < Fun(P°P,Ch(R)): lim
is a Quillen pair because the diagonal functor A sends weak equivalences and
cofibrations into weak equivalences and cofibrations. Therefore, by Corollary 3.3.7,
homotopy limits can be computed by a fibrant replacement. Then, we are done by
the fact that higher limits are the cohomology of the homotopy limit of a functor
concentrated in degree 0, see [Weig4, Corollary 10.5.7],

H!(F;C) = H'(holim F) = H'(lim RF). O
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Thanks to this result, we extract directly vanishing bounds from the height of a

tibrant replacement.

Definition 5.1.13. Let C be a bounded cochain complex. The height of C, denoted
by (C), is defined to be the integer 1 such that CK = 0 for all k > n and C" # 0.
For a functor F: C°P — Ch(R) we define the height of F to be the supremum of
the heights, i.e.,

h(F) = sup{h(F(c)) | c € C}.

Corollary 5.1.14. Let C be a filtered El-category, and R be a C-bijective ring. Let
F: C°P — Modg be a functor. If RF: C°P? — Ch(R) is a fibrant replacement of F such
that h(RF) = n, then

H'(C;F) =0
for every i > n.
Proof. This follows directly from Proposition 5.1.12. O

Dually, we can compute higher colimits by a cofibrant replacement

Proposition 5.1.15. Let C be a filtered El-category, and R be a C-bijective ring. Given a
functor F: C — Modg, then

H;(F;C) = H;(colim QF)
where QF : C — Ch(R) is a cofibrant replacement of F in Fun(C, Ch(R)) with the direct
model category; see Proposition 5.1.8.
Proof. This result holds by dualising the proof of Proposition 5.1.12. O

As before, we can obtain vanishing bounds from the depth of a cofibrant

replacement.

Definition 5.1.16. Let C be a bounded chain complex. The depth of C, denoted by
depth(C), is the integer n such that Cy = 0 for all k > n and C,, # 0. For a functor
F: C — Ch(R) we define the depth of F to be the supremum of the heights, i.e.,

depth(F) = sup{depth(F(c)) | c € C}.

Corollary 5.1.17. Let C be a filtered El-category, and R be a C-bijective ring. Let
F: C — Modg be a functor. If QF : C°P — Ch(R) is a cofibrant replacement of F such
that depth(QF) = n, then

Hl-(C,- P) =0
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for every i > n.

Proof. This follows directly from Proposition 5.1.15. O]

5.2

The idea underlying the preceding results is that higher limits can be computed
by means of a fibrant replacement rather than an injective resolution. Conse-
quently, the goal of this section is to present a systematic approach for computing
a fibrant replacement of a given functor. To describe it explicitly, we need the

following notions.

Definition 5.2.1. Let C be a filtered El-category, and R be a C-bijective ring. A
functor F: C°P — Modp, is said to be locally fibrant at ¢ € C, if for every d such
that either there is a non-invertible arrow d — c or d = ¢, the matching map:

F(d) — MyF
is an epimorphism.

Remark 5.2.2. A functor F: C°P — Ch(R) is fibrant if and only if it is locally fibrant
atcforallceC.

Our desired fibrant replacement will not change the functor whenever it is
already fibrant. The method we present proceeds by induction on the degree of
the objects. At each step, if the object is not locally fibrant, we need to transform
the functor using the following construction.

First, we review the notion of the mapping cocylinder and its factorisation

property.

Definition 5.2.3. Let f: C — D be a map between unbounded cochain complexes.
The mapping cocylinder of f is the cochain complex cocyl(f) whose degree n
part is

cocyl(f)" := C" x D71 x D",

and differential is given by the formula

o(c,d,d) = (oc,d' — f(c) — od, od').
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Proposition 5.2.4 ([Weigs, Section 1.5]). Let f: C — D be a morphism between
cochain complexes. Then, there is a factorisation of f:

c—1- cocyl(f) ——= D

c — (c,0,f(c))

(c,d,d) —— d

where i is a monomorphism inducing an isomorphism in cohomology, and 7t is a split
epimorphism.

Next, we introduce a new concept that provides us with a factorisation property

similar to the mapping cocylinder.

Definition 5.2.5. A morphism f: C — D between cochain complexes is said to be
truncatable if h(C) < h(D), and the differential D"(P)=1 — D"(D) is onto.

Definition 5.2.6. Let f: C — D be a truncatable morphism between cochain
complexes with h(D) = n + 1.

1. The truncation of D is the cochain complex TD whose degree k part is

k .
(TD) = D .1fk <n
0 ifk>n,

and the truncation of f is the morphism Tf: C — TD, defined by

k ifk<n
T k:: f 1 x
(Tf) {0 if k > n.

2. The truncated mapping cocylinder of f, denoted by cocyly(f), is the mapping
cocylinder of the morphism T(f)

cocyly(f) := cocyl <C pitY TD).

Proposition 5.2.7. Let f: C — D be a truncatable morphism between cochain complexes.
Then, f factors through the truncated mapping cocylinder as a weak equivalence followed
by an epimorphism,

C = cocyly(f) — D.
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Proof. The inclusion i: C — cocyly(f) is the one given by the mapping cocylinder,
see Proposition 5.2.4. The morphism 7: cocyl(f) — D is given by:

0 ifk>n+1
k= op : D" — D"l ifk=n+1
nDk:Ckka_lka—»Dk if k <n,

where 71 is the projection and Jp is the differential of D. O

Now, we have all the ingredients to describe how to construct fibrant replace-
ments for a given functor F: C°? — Modpg. The generalised Reedy structure on C
allows us to follow an inductive strategy.

In the full subcategory of C spanned by the objects of degree 0, there are
no morphisms between different objects. So, for every ¢ € C of degree 0, the
matching object M.F = 0, thus, the first step is to define

Assume that RF is already defined in the full subcategory of objects of degree
less than n. In order to define RF on ¢ € C of degree n, we need to choose a
factorisation of the composite ¢.: F(c) - M.F — M.RF as a weak equivalence
followed by an epimorphism. That is, to choose an object RF(c) together with a
weak equivalence F(c) — RF(c) and an epimorphism RF(c) — M RF such that
the following diagram commutes:

i~ l (5)

To construct this factorisation properly, we follow the next rules:

RULE 1: If M/RF is concentrated in degree 0 and ¢, is surjective. Then, define
RF(c) as F(c) and the trivial factorisation of ¢,

—

F(c) RF(c) = F(c) —— M.RF.
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RULE 2: If the composite ¢, is truncatable. Then, define RF(c) as the trun-
cated mapping cocylinder cocyly(e.) and the factorisation described in Proposi-
tion 5.2.7.

F(c) — cocyly(ec) — M:RF.

RULE o: In general, define RF(c) as the mapping cocylinder cocyl(e.) and the

factorisation described in Proposition 5.2.4,
F(c) — cocyl(e;) — M.RF.

Note that RULE 1 and RULE 2 can be considered guidelines that the user can
omit since one can always apply RULE o and, in each case, the transformation
becomes a fibrant replacement. Thus, by choosing each step to follow every rule
or just RULE o, we can produce a custom fibrant replacement that is optimal for
our purpose. For example, in Chapter 7, the fibrant replacement applying all
rules when it is possible will play a central role. But in Chapter 8, for practical
reasons, we will work with the fibrant replacement constructed just by applying
only RULE o. Thus, to simplify the notation, we give a name to both extreme

cases.

Definition 5.2.8. Let C be a filtered El-category, R be a C-bijective ring and
F: C°? — Modpg be a functor. The functor TF: C°? — Ch(R) denote the fibrant

replacement of F constructed inductively following the next rules:
1. if F is locally fibrant at ¢, TF(c) := F(c);
2. if e.: F(c) - M.TF is truncatable, TF(c) = cocyly(e.); and
3. otherwise, TF(c) = cocyl(e,).

Notice that the truncability of the morphism ¢e.: F(c) — M.TF implies that
h(M.TF) > 0. Thus, if ¢ is truncatable, then F cannot be locally fibrant at c.

Definition 5.2.9. Let C be a filtered El-category, R be a C-bijective ring, and
F: C°? — Modpg be a functor. The cocylinder of F, denoted by cocyl (F), is the

fibrant replacement of F constructed inductively by choosing for every c € C,

cocyl (F) (€)1 {F(c) if d(c) = 0,

cocyl(ec) otherwise.
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We end this section with an example that illustrates the difference between
both fibrant replacements and shows how TF could induce vanishing bounds

directly.

Example 5.2.10. Let IN be the poset of natural numbers with the trivial filtration
Idn: IN — N, and F: N°P — Ab be a functor. Notice that the matching object
at n > 0, is the value of the functor at n — 1 and the matching morphism is just
F(n—1 < n), this is,
Fn) "5 ML = Fn— 1),

Therefore, F is locally fibrant at n iff for every k <n, F(k—1 <k): F(k) - F(k—1)
is an epimorphism. Assume the morphisms F(0 < 1) is not surjective. This
implies that F is not locally fibrant at 1; thus, we need to define TF(1) to be the
mapping cocylinder of F(0 < 1).

x1 — F(0 < 1)(x0) F(1)
(%o, x1) F(0) x F(1) —— F(0)

(x0,x1) ——— Xxo.

Now, observe that the differential of TF(1) is an epimorphism, so the map
e2: F(2) - MyTF = TF(1) is truncatable, thus we define TF(2) to be the truncated
mapping cocylinder of e;. More precisely, TF(2) is the cochain complex whose

degree n part is:

F(0) x F(1) ifn=1
TF(2)" := { F(0) x F(1) x F(2) ifn=0
0 otherwise,

and the non-zero differential, 0: F(0) x F(1) x F(2) — F(0) x F(1), is given by the
formula
0(x0,x1,%x2) = (x9 — F(0 < 2)(x2),x1 — F(1 < 2)(x2)).

The matching map TF(2) — M,TF = TF(1) is given by

F(0) x F(1) — F(0) F(0) x F(1) x F(2) — F(0) x F(1)
(x0,x1) = x1 —F(0 < 1)(x0) (x0,x1,%2) = (x0,x1)-
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A short computation proves that we can reiterate this construction and define
TF(n) to be: F(0), if n = 0; cocyl(F(0 < 1)), if n = 1; otherwise:

(xi - Zi<n F<i < n)(xn>) Hz’<n F(i)

I I

(xi) [Ticn ().

Note that for every n € IN, h(TF(n)) < 1. Therefore, it follows from Corol-
lary 5.1.14 that higher limits vanish for degrees greater than 1,

H"(N;F) = H'(imTF) = 0 if n > 1.

However, for every n € IN, h(cocyl (F) (n)) = n, so this fibrant replacement does

not give directly a vanishing bound applying Corollary 5.1.14.

The fibrant replacement TF can be used to prove directly that the well-known
Mittag-Leffler condition for the vanishing of higher limits on towers, see [Weig4,
Section 3.5], implies H(IN; F) = 0.

Let P be a graded poset and F: P°P — Modpr be a functor. The higher limits
of F restricted to P\{1} are the cohomology R-modules of the matching object of
a fibrant replacement of F at 1. In particular, it is for the cocylinder of F,

HY(P\{1}; F) = H'(Mjcocyl (F)).

Moreover, an explicit description of the last non-trivial differential of the matching
object Mycocyl (F) could help us to know if we can apply RULE 2 at p € P. Thus,
we devote this subsection to prove the following result about this differential.
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Theorem 5.2.11. Let P be graded poset, and let F: P°P — Modg be a func-
tor. Given p € P with d(p) = n > 1, the matching object Mycocyl (F) at
cohomological height n — 1 satisfies,

(Mpcocyl (F H F(cp).

CcEN)

Moreover, if n > 2, the matching object Mycocyl (F) at cohomological height
n — 2 satisfies,

n—1
(Mpcoeyl (F))" > =[] [[ Flco),
i=0 ced;(Ap)

and the differential (Mpcocyl (F))"—2 9, (Mpcocyl (F))*1 is defined as fol-
lows, for ¢ € Ap and x € (Mpcocyl (F))"2,

o(x)e = (=1)""F(c1 — co)(x4y(c) Z i1y

As an immediate consequence, we obtain, by Definition 5.2.9, the following

two results.

Lemma 5.2.12. Let P be a graded poset, and F: P°P — Modg be functor. Given p € P
with d(p) = n > 1, the cocylinder cocyl (F) at cohomological heights n and n —1,
cocyl (F)" ' (p) -5 cocyl (F)" (p), satisfies,

cocyl (F)" (p) = [ [ Flco),

cehy
n—1
cocyl (F)" " (p) = [ | Flco) » [] Flco).
cedp i=0 cedi(Ap)

and the differential 0 is defined as follows, for c € Ay, and x € cocyl (F)" 1 (p),

Op(x)e = xc + (—1)"F(c1 — ¢o) xdo Z

Proof. For p € P of degree greater than 2, the result holds by Definition 5.2.9. If
p € P has degree 1 the result hold since ], [ eea;(a,) Flco) = E(p). O
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Lemma 5.2.13. Let P be a graded poset, and F: P°P — Modg be a functor. Given
p € P withd(p) = n > 2and q < p, the cocylinder homomorphism

cocyl (F)"™" (g < p): coeyl (F)"™" (p) — coeyl (F)"™ (q)

satisfies,
n—1
cocyl (F)" ' (p) = [[ Flco) x [ ] Flco)
ceNp i=0 ced;(Ap)
cocyl (F)" " (q) = [ [ F(co),
ceNg

and for all ¢ € Ay and x € cocyl (F)"~ ! (p),

cocyl (F)"™ (q < p)(X)ec = Xe<p-

Proof of Theorem 5.2.11. By Definition 5.2.9, the result is true for d(p) = 1, and we
proceed by induction on the degree n = d(p) of pe P. If g < p, thend(q) <n—1,
and we have that cocyl (F )”_1 (9) = 0 unless g < p. Then, by the induction
hypothesis and Lemma 5.2.12,

(Mpcocyl (F H H F(cp) H F(cp).

q=<p ceAq ceAp

n—2

For the description of (M,cocyl (F))"~=, notice that, for each g < p, the cocylinder

of F verifies cocyl (F)"—2 (9) =0 unless n —1 < d(g) < n —2. By the induction
hypothesis and Lemma 5.2.13, ford(q) =n—1and d(r) = n—2,r,q < p, we have

cocyl (F 1_[ F(co) 1_[ n F(co) and cocyl (F)" 2 ( H F(co),

cehy ceA,

and x € cocyl (F)" 2 (g) is mapped by the homomorphism cocyl (F)" 2 (r < g) to
the tuple of cocyl (F )2 (r) with value Xc<q at the chain ¢ € A;. Thus, the inverse
limit (Mpcocyl (F))"~2 is given by

(Mpcocyl (F)"2=LxL,

where
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and where L’ consists of the tuples

(Xq)g=p € H H F(co)

q<PceAq

such that, if r < 1,92 < p,d(q1) =d(g2) =n—1,d(r) =n—2,c € A, then

(Xg)e<qr = (Xg,)c<g,-
From this description, it turns out easily that L' = [leea, o Ap) F(cp), and hence
we get the description of (Mpcocyl (F ))*~2 in the statement.
To prove that the formula for the differential holds, it is enough to check that,
for every q < p, the following diagram commutes,

-1

[Meca, Flco) " [Leca, Flco)

(I i

_ N _
n=01 Hcedi(Ap) F(co) — HceAq F(co) x H?:oz Hcedi(Aq) F(co),

where ¢ is given as in the statement, ¢, is given by induction, and Lemma 5.2.12,

and the horizontal arrows were constructed in the previous part of this proof as

follows,

n—l( n—1
4

X)e = Xc<p, for c € Ay, x € (Mpcocyl (F))
q”_z(x) B {pr, fori=0,...,n—2,ced;(l;), x € (Mpcocyl (F))”_z,
0=

X4, 1(c<p)r for c e Ay, x € (Mpcocyl (F))”_Z.

n—2

Now consider x € (Mpcocyl (F))" and ¢ € A;. Then the following computa-

tion finishes the proof, where we write ¢’ = ¢ < p for simplicity,

Mn-1(0(x))e = (0(x))e<p

= (=1)"F(co < 1) (Xgy(cr)) Z |

:N
,L,H

= (=1)"'F(co < c1)(xap(ery) + > ()" g oy + xa, (e

N
Il
_

= aq(ﬂniz(x))c- =
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53

This thesis focuses on the description of higher limits. As such, detailed
instructions for constructing fibrant replacements were presented in the preceding
section. Nevertheless, it is imperative not to miss the opportunity to provide a
method for computing higher colimits by giving at least one strategy to construct
cofibrant replacements. To produce a cofibrant replacement of a given functor,

we need the notion of mapping cylinder.

Definition 5.3.1. Let f: C — D be a map between unbounded cochain complexes.
The mapping cylinder of f is the chain complex cyl(f) whose degree n part is:

cyl(f)n := Cy x Cyy—1 x Dy,
and whose differential is given by the formula:
dc,c,d) = (dc+,—ac,od — f(c)).

Proposition 5.3.2 ([Weig4, Section 1.5]). Let f: C — D be a morphism between chain
complexes. Then f factors through the mapping cylinder:

C —— cyl(f) —— D
c —— (c,0,0)

(c,c,d) —— f(c)+d

as a split monomorphism followed by an epimorphism that induces an isomorphism in
cohomology.

Let C be a filtered El-category and R be a C-bijective ring. We construct a
cofibrant replacement of a functor F: C — Modg by induction on the filtration.
For every object ¢ € C of degree 0, we have that M.F = 0. Therefore, we start by
defining

Assume that QF is defined in the full subcategory of objects of degree less than
n. To define QF on c € C of degree n, we need to choose a factorisation of
the composite ¢.: L.QF — L.F — F(c) as a monomorphism followed by weak
equivalence. That is, to choose an object QF(c) together with a monomorphism
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L.QF(c) — QF(c) and a weak equivalence QF(c) — F(c) such that the following

diagram commutes:

L.QF =---3 QF(c)
l N (6)

L.F —— F(c).

Proposition 5.3.2 provides such a factorisation of ¢, using the mapping cylinder,

L.QF — QF(c) = cyl(ec) — F(c).






Chapter 6

ACYCLICITY OF MACKEY FUNCTORS FOR
POSETS

Mackey functors are a generalisation of group representations. They abstract
how representations of subgroups of a given group can be combined to form
representations of the entire group in a more general context. Mackey functors
naturally appear in algebraic topology, homological algebra, and, obviously,
representation theory.

In particular, Mackey functors are related to lim- and colim-acyclicity. In this
chapter, we introduce the notion of Mackey functors for posets inspired by the
classical one [Weboo]. We also show how Mackey functors with quasi-unit are
related to the pseudo-projectivity condition introduced by Diaz [DRog]. In the
case of the underlying poset being filtered, these notions agree with the cofibrant
functors.

A Mackey functor for a group G over a commutative ring with unit R is a pair
of functor (M., M*) from the category of G-sets to the category of R-modules
such that M, is covariant, M* is contravariant, both coincide on objects, and other
axioms that we are not going to cite here, for more details see Webb’s paper
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[Weboo]. Given J,K < H subgroups of G, the action of the Mackey functors in
the homogeneous G-sets, G/H, G/] and G/K, are related by the Mackey formula

M ([ Do MliD) = D) Mullfnd) o Mu([e]) o M ([ k) ()
xe[J\H/K]

where cy is the conjugation by x morphism, ¢, is the inclusion and [J\H/K] is a
set of representatives in G for the double cosets J\H/K.
If we restrict these functors to the meet-semilattice of central subgroups of G,

with meet defined as the intersection, the Mackey formula (7) becomes

M*([11]) 0 M. ([ ( D M*<[cx]>)oM*<[t}mK]>oM*<[ﬂmeJ>
e[J\H/K]

To define Mackey functors for posets mimicking this formula, we substitute the

element (er[ 7\H/K] M ([cx])> by a certain kind of endomorphisms that commute
with the composite equivalent to M*([# ko M*([‘ﬁ )

Definition 6.1. Let P be a poset, R a commutative ring with unit, and F: P — C
a functor. Given p € P, a endomorphism of R-modules &« € Endg(F(p)) (or
automorphism « € Autgr(F(p))) is said to be F-linear if, for every q < p, the
following condition holds:

waoF(qg<p)=Flg<p)op,

where B € Endg(F(q)) (or B € Autg(F(q))). We use the notation Endk(p) (or
Autﬁ( p)) to denote the submonoid (or subgroup) of F-linear endomorphisms (or
automorphisms) of F(p).

Example 6.2. Given r € R, the homothety x — rx is an example of F-linear

endomorphism. In particular, every identity is F-linear.

Definition 6.3. Let P be a filtered meet-semilattice and R be a commutative ring
with unit. A pair of functors (F, G) is said to be a Mackey functor if F: P — Modpg
is covariant, G: P°? — Modp is contravariant, F(p) = G(p) for all p € P, and for
all g < p,k < p there exist a(p, q,k) € Endk(g) such that

G(g<p)oF(k<p)=ua(p,qk)oF(kng<q)oGlknqg<k).

We say that (F, G) has a quasi-unit if, for every q < p, the endomorphism «a(p, g,9)
is an automorphism.
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The term quasi-unit is borrowed from [JM92, 5.7 Definition], and it is related to
acyclicity.
Example 6.4. Recall that a twin functor over the face poset of a simplicial complex
P is a pair of functors (D, I) from P to Ab such that:

1. D: P — Ab is covariant and I: P°P — Ab is contravariant,
2. forevery o€ P, D(0) = I(0), and

3. every pullback diagram:

cne —— o I(cno') — I(0)
li/ lj induces a commutative diagram TI(I-/) T[(j)
o T, I(c") P, I(7).

Twin functors are a particular case of Mackey functor with « = Id.
We also define weak Mackey functor by dropping the contravariant functoriality

and the meet-semilattice constraint.

Definition 6.5. Let P be a poset. A functor F: P — Modg is a weak Mackey functor
if for every pair g < p, there exists a morphism in Modg, G(g < p): F(p) — F(g)

such that the composite
F(g<p) G(g<p)
F(q) = F(p) = Flo)
is an F-linear endomorphism a(p, q) € Endk(g), and for k < p such that g < k,
Im(G(q < p) o F(k < p)) < Imp(q).

The functor F is said to have a quasi-unit if, for every p < g, a(p,q) € Autk(q).

Remark 6.6. Notice that the covariant part of a Mackey functor is a weak Mackey

functor.

Another condition related to colim-acyclicity is the pseudo-projectivity of
functors in DCC posets.

Definition 6.7. A functor F: P — Ab over a DCC poset is pseudo-projective at
p € P if, for every finite subset Q © P<, and every element @eqxg € Dyeg F(7),
the condition:

2 F@<p)xg) =0
7€Q
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implies that x4 € Imp(q) = >, Im F(k < q) for every g € max Q. We say that F
is pseudo-projective if it is pseudo-projective at p for every p € P.

First, we show that a weak Mackey functor with quasi-unit over a DCC poset

is pseudo-projective.

Theorem 6.8. Let P be a DCC poset and F: P — Ab be a weak Mackey functor
with a quasi-unit. Then, F is pseudo-projective, and hence, it is colim-acyclic.

Proof. Let F: P — Modpg be a weak Makey functor with quasi-unit. Let p € P, Q
be a finite subset of P<;, and @geqXq € Dy F(9) such that:

Z F(g < p)(xq) = 0.
qeQ

For k € max Q, we prove that x; € Imp(k). One can assume without loss of

generality that p ¢ Q, then apply the morphism G(k < p) to the equation above:

0=G(k<p)(D), F(g<p)(xg) =, (Glk < p)oF(q < p))(xy)

70 750
= (G(k < p) o F(k < p)(xi) + > (G(k < p) o F(q < p))(xq), 8)
70
q#k

First, we show that the second addend in Equation (8) belongs to Imp (k). We can
split this addend as:

DGk <p)oF(q<p)(xg) + D, (Glk < p)oF(g < p))(xy).
qeQ q€Q
q<k gk

If g <k < p, wehave F(q < p)(xq) = F(k < p) o F(q < k)(x;). Then, there exists
a € Autk (k) an F-linear automorphism such that the composite can be written as

Gk <p)oF(k<p)oF(q <k)(xg) =aocF(g <k)(xg).
Since « is F-linear, there exists f € Autg(F(g)) such that

Gk <p)oF(k<p)oF(qg <k)(xg) =aocF(g <k)(x5) = F(q <k)opB(xg).
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Thus, we conclude that the element G(k < p) o F(q < p)(x4) € Imp(k). In the other
case, q < k, we are done after applying the definition of weak Mackey functor,

(G(k < p)oF(g < p))(xg) € Imp(k).

Next, apply the definition of Mackey functor again to the first addend of
Equation (8), G(k < p) o F(k < p)(xx) = a(xy) for some a € Autf (k). Then, we
solve this term in the same equation obtaining

a(xp) = = ) (Glk < p) o F(q < p))(xg)-
7€Q

gk
As the right side of this identity belongs to Imp(k), there exists finite many
elements y; € F(I) for I < k such that

a(xp) = = Y (Glk < p)oF(q < p)(xg) = D FL <k)(y).
geQ I<k
q#k

As « is invertible and F-linear, we can solve for x; as follows,

xe =Y (@ o F(L<K)(yr) = Y, (F(L < k) o Br)(y)

I<k I<k

for some automorphisms f; € Autg(F(/)). This implies that x; € Imp(k), and we

are done. ]

In the case of a filtered poset, we show how a functor F: P°? — Modpy is
pseudo-projective if and only if it is cofibrant. However, for just a DCC poset
P, the functor can be shown to be pseudo-projective if and only if it satisfies
the same condition as cofibrant functors but without requiring the poset to be
filtered.

Definition 6.9. Let P be a poset and F: P — Ab be a functor. The functor F is
locally injective at p € P if the natural map induced by colimit

colim F — F(p)

P<p

is a monomorphism. The functor F is said to be locally injective if it is locally
injective at p for every p € P.
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Note that in a filtered poset, locally injective functors are the cofibrant ones.

Theorem 6.10. Let P be a DCC poset, and F: P — Ab be a functor. Then F is
locally injective if and only if it is pseudo-projective.

In the case of P being a filtered poset, Theorem 6.10 says that pseudo-projective
functors are cofibrant; therefore, we reprove Diaz’s result about the colim-
acyclicity of pseudo-projective functors [DRog]. We summarise this chapter

in the following diagram.

Mackey (poset) —=| Weak Mackey — Pseudo-projective Cofibrant

A\
[DRo9]

AN
colim-acyclic

We devote the rest of the chapter to the proof of Theorem 6.10. The proof is

divided into several lemmas.

Lemma 6.11 ([DRo9, 2.6]). Let P be a DCC poset, and {Q"} be a sequence of subsets of
P such that Q" < Q"~1. Then, there exits N € N such that Q" = @ for every n > N.

Lemma 6.12. Let P be a DCC poset, p € P and F : P — Ab be a functor such that F
is pseudo-projective at p. Let x = @y<pxq € D, , F(q) satisfy

2 Fla<p)(xg) =0.

q<p

Then, there is a sequence {x"}n>0, X" = @y, xj € Dyp F(q), with x0 =z,

DIF@@<p)x)) =0, x" —x" = > Yig @ —F(k < q)(Ykq),
q<pr k<gemax supp(x")

[x"*1] = [x"] in colimp_, F, and supp(x"*!) < supp(x"), for any n > 0, where
Ykq € F(k), In addition, there exists N > 0 such that xj = 0 forallg < pifn > N.

Proof. This is a finer reformulation of [DRog, Lemma 2.3], and we provide details.
We define x~! = 0 and work by induction on n > 0, assuming that x" has
already been constructed satisfying the properties in the statement. Then, as
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2g<p F(q < p)(x7) = 0and F is pseudo-projective at p, for every g € max supp(x")
we have that xj € Imp(q), i.e., there exists @r4Vx,4 € Dy < F (k) such that

x) = kZ F(k < ) (Ykyq)-
<q

For every pair (k,q) with k < g < p, we set

Ykq if k <gq e maxsupp(x"),

n

q
0 otherwise,

Xeg = X5 if k=g ¢ maxsupp(x"),

and we define x"*! = Dq<p X by

n+1 _
Y = Z Xq,k-
k=q

Then

DIF@@<p)a™) =Y Fa<p) QO x0) = D, Fla<plage). ()

q<p q<r k=g g<k<p

In this last sum, if ¢ = k for k ¢ maxsupp(x"), the corresponding addend is
F(q < p)(xg)- The rest of the addends can be reordered as follows,

Yoo Fa<pyg) = >, Flk<p) (D F@a<k)(yg)

g<k<p k<p g<k
kemax supp(x") kemaxsupp(x")
n
= ) Flk<pp).
k<p
kemax supp(x™)

Hence the sum in Equation (9) equals >, _, F(q < p)(x7), and this is 0 by hypoth-
esis. From the construction above, it easily follows that

L 3 Yig ® —F(k < q)(Yiq),

k<gemaxsupp(x")

and, from here, it is clear that [x"*!] = [x"] in colimp_, F and that the supports
are related by supp(x"*1) < supp(x"). From this latter condition and Lemma 6.11,
we obtain N > 0 with the stated property. O]
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Lemma 6.13. Let P be a DCC poset, F: P — Ab, and p € P. If F is pseudo-projective
at p, then F is locally injective at p.

Proof. Lete: colimp_, F — F(p) be the corresponding natural map and consider
[x] € ker(¢) with x € D, ., F(9). By Lemma 6.12, there exists a sequence {x"},¢
with x" € @,_,, F(q) such that x° = x, [x"1] = [x"] and x" = 0 for N big enough.
Hence [xY] = [x"] = [0] = 0 and the Lemma is proven. O

Lemma 6.14. Let P be a DCC poset, F: P — Ab, and p € P. If F is locally injective at
q for every q < p, then F is pseudo-projective at q for every q < p.

Proof. Since P<p is a DCC poset, we proceed by induction. If g < p is minimal in
P, then F is pseudo-projective at g by definition. Thus, consider now g < p such
that F is pseudo-projective at k for all k < g. We show that F is pseudo-projective
at g too. So let x = @4y € ®k<q F(k) be such that

> F(k < q)(x) = 0.

k<q

This is equivalent to that ¢([x]) = 0 for the natural map &: colimy, F — F(q).
By hypothesis, F is cofibrant at g, and hence [x] = 0. In turn, this equality is
equivalent to the existence of elements y;, € F(I) for | < k < q such that finitely
many of them are different from zero and with

X = @egk = ), Yk ®—F( <k)(y1), (10)
I<k<q

which implies that, for any k < g,

Xk = > Yk — > F(L<k)(yip)- (11)
k<l I<k
Let K = {k € Py | 31 < kwithy;r # 0}. We are about to show that we
can choose the elements y;’s appearing in (10) subject to the constraint that
max K < supp(x). Thus let m € max K\ supp(x). Then

X =0 == > F(I = m)(yim)- (12)

I<m
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We can rewrite Equation (10) as follows,

x= 3 Ym@—Fl<m)yim)+ D, yix®—F(1 <k)(yi)

l<m<q I<k<g
k#m
:(@l<myl,m)_<@mZP<l<m Yim > D vk ®—F(I < k)(xp0).
I<m I<k<g
k#m
which, by Equation (12), we can simplify to
x=y+ > yx®-F1<k)(yy), (13)
I<k<g
k#m

where v = @Y1 € 1< F(I). As F is pseudo-projective at m < g by induction
hypothesis, we apply Lemma 6.12 to the element y to obtain a sequence of
elements {y"},>0 such that 4° = vy, [y"*'] = [y"] for all n > 0, and y~ = 0 for
N big enough. In addition, as supp(y"*!) < supp(y") and supp(y) < {m}, we
obtain that

y' -yttt = Dz @-Fl<k)(zp) = D, zx®-F(l<k)(zx) (14)
I<k I<k<m
kemax supp(y")

for elements z; . € F(I). Define 1, = v, 4, assume by induction that

x=y"+ Yy ®-F(1 <k}, (15)
I<k<q

k#m
for elements yj', € F(I), and note that this holds for n = 0 by Equation (13). For
the induction step, we may write

x =y —y" eyt Yy ®—F(L < K)(yik)

I<k<q
k#m

b ) viite R <k,

I<k<q
k#m
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for elements y”” € F(I), where in the last equality we have employed Equation
(14). Hence, for n = N, Equation (15) simplifies to

x= >y @®—F( <)y}

I<k<g
k#m

Repeating this process for every element m € max K\ supp(x) we find a decompo-
sition similar to Equation (10),

x= D Y@ —F < k)Y,
I<k<g

and satisfying that, for K’ = {k € P, | 31 < k with y;, # 0}, we have
max K\ supp(x) < max K\ supp(x).

Iterating this procedure we obtain a sequence of sets {K"},~0 and decompositions
similar to Equation (10) with K = K, K! = K/, and such that

max K" 1\ supp(x) < max K"\ supp(x).

Setting Q" = max K"\ supp(x) and applying Lemma 6.11 we find N such that
QN = &, i.e., max KN < supp(x). For the corresponding decomposition,

x= > 9@ —F( <k)(@rx).
I<k<q

let k belong to max supp(x) so that we have, similarly to Equation (11),

Xe= Y 0k — D FU < k) (@1p)

k<l I<k

If > o1 9k1 # O, there exists some | > k such that ; ; # 0, which is a contradiction
with max KN < supp(x). Hence, Y _; fix; = 0 and x; € Imp(k). O
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Chapter 7

VANISHING BOUNDS

Given a functor F: P°P — Ab over a filtered poset, in Example 5.2.10, we show

how TF could help us to provide a vanishing bound for the higher limits of F.

The goal of this chapter is to provide different conditions that imply the natural

morphism described in the construction of TF,
ep: F(p) —» M,TF,

is truncatable. For short, we say that an object p € P is F-truncatable if the natural
map ¢,: F(p) — M,TF is truncatable.

Notice that for every p € P, F(p) is a cochain complex concentrated in degree 0.

Then, p is F-truncatable if and only if 1(M,TF) > 0, and the last non-trivial
differential of M,TF,

TFE h(M,TF)—1 N TF h(M.TF)
(MC ) (MC ) 7

is an epimorphism.
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7.1

Given a functor F: P°? — Ab, in the inductive construction of a fibrant
replacement RF, once the first mapping cocylinder has been done, one only
needs to check that the last non-trivial differential of M,RF is an epimorphism.
This condition holds if the matching object of RF at p is a direct sum of mapping
cocylinders. However, this condition is strong because we only have to check
MyRF at its last non-zero dimensions. In this section, we introduce a method to
construct a labelling for a given filtered poset P that controls the height of any
functor F: P°P — Ab.

The intuitive idea behind the labelling we will present in this section is as
follows. Let F: P°P — Ab be a functor on a filtered poset, p € P, and n be
the height of TF(p). If the support of TF” and TF"~! in P, has as many
maximal elements as connected components, then M, TF will behave like a sum

of cocylinders at heights n and n — 1.
Definition 7.1.1. Let P be a filtered poset, p € P and S be a subposet of P—,. We
say that p closes a circuit in S if

#Max(S) > #Conex(S),
where Max(S) denotes the maximal objects in S and Conex(S) its connected
components.

In a combinatorial point of view, if “p closes a circuit in S”, then there is an

undirected circuit that contains p in the Hasse diagram of S u {p}.

Figure 17: p closes a circuit in S’ but not in S.

Definition 7.1.2. Let P be a filtered poset. We define the labelling function of P
to be the map B: P — IN defined inductively as follows: For objects of degree 0
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or 1, we assign the values 0 or 1 respectively. Next, we assume that B has been
defined for every object of degree less than n. For a fixed p € P of degree n, we
define m as the maximum label among objects strictly below p, and 5, as the full
subposet of P~ containing all the objects s < p whose label is either m — 1 or m.

That is,
By, ={sePp|m—1<B(s) <mj.

We define the label of p by the following rule:

m+1 if p closes a circuit in 5,
B(p) = { ’

m otherwise.

Example 7.1.3. Consider the poset generated by the following Hasse diagram,

P4 < P

<N

p7
e
ps ps <— p2 <— Po-
AN e

Pe < P3

We will show how to define its labelling function inductively. First, by definition
B(po) = 0 and B(p1) = B(p2) = B(ps) = 1,

Nl

Now, we focus on the object p,. We have to check if py closes a circuit in By,.
This subposet has only two objects, p; and po. Then B, has a maximum and a
connected component; therefore, B(ps) = 1. Similarly, B(ps) = B(ps) = 1,
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1—1
1—1——0
1 1

Next, p7 closes a circuit using the last two labels, i.e., B, contains two maximal
objects, ps and ps but only a connected component, thus B(p7) = 2. To finish the

labelling, note that B, has two connected component and two maximal objects,

]97 and P6/

1—1

/

2

AN
1—1

1 1

In spite of pg closing a circuit in P, it does not close any circuit in B),. Then,
B(ps) = 2, and the labelling function in P is given by the following diagram:

1—1
/ \
/ AN
1—1—0.
\ e
— 1

The main goal of this section is to show how the labelling functions gives a
vanishing bound for the higher limits of any functor.
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Theorem 7.1.4. Let P be a filtered poset, and B: P — I its associated labelling
function. For every functor F : P°P — Ab,

H'(P;F) =0,

if i > sup B.

To prove this theorem, we need the following technical lemma.
Lemma 7.1.5. Let F : P°P — Ab be a functor over a filtered poset, B: P — IN the

labelling function associated to P, and p € P be an object such that:
(a) For every s < p, h(TF(s)) < B(s);

(b) h(M,TF) = max{B(s) | s < p} = 1, and

(c) B(p) = max{B(s) | s < p}.
Then p is truncatable.

Proof. For short, name m := max{B(s) | s < p}. By (b), h(M,TF) = m, thus p
is F-truncatable iff the differential 0 : (M,TF)"~! — (M,TF)" is surjective. In
addition, by (c), p does not close any circuit in B,. This implies that:

I}ngFz @ TE(s).
P

semax Bp

Notice that, by (a), every TF(s) is a mapping cocylinder of height less or equal
than m, so the differential

(lim TF)"~! — (lim TF)™
B, B

is an epimorphism. So, to prove the lemma, it is enough to check that the
horizontal morphism, induced by the restriction, in the following diagram are
isomorphisms:

(limp_, TF)" ——— (limg, TF)"

I I

(limp_, TF)"" ! —— (limg, TF)" .

By (a), if s ¢ By, then h(TF(s)) < B(s) < m — 2, so for every s ¢ By, TF'(s) = 0 for
i=m-—1,m; and Bp is upper convex; thus, by Proposition 2.1.13, we conclude

that the horizontal arrows are isomorphism and we are done. O
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Now, we prove the main theorem of this section.

Proof of Theorem 7.1.4. As stated in Proposition 5.1.12, it suffices to demonstrate
that h(TF(p)) < B(p).

We proceed by induction on the degree of the objects. If p € P has degree 0 or
1 the result holds by definition.

Next, let p € P be an object of degree n, and assume that h(TF(q)) < B(q) for
every q € P of degree less than n. By the induction hypothesis,

h(MpTF) < max{h(TF(s)) | s < p} <max{B(s) | s < p} =: m.
If h(MpTF) < m or B(p) = m + 1, the result hold because:
h(TF(p)) < h(M,TF) +1 <m < B(p).

Therefore, we only need to prove the result when (M, TF) = m. There are two
options regarding B(p): either B(p) = m + 1, or B(p) = m.
In the first case the result holds by the following inequality:

W(TE(p)) < (M, TF) +1 = m + 1.

Otherwise, B(p) = m, we apply Lemma 7.1.5 to conclude that p is truncatable,
and hence
h(TF(p)) = h(M,TF) = m. O

Example 7.1.6. Let K be a simplicial complex of finite dimension 4, and P be its
face poset. The labelling function at P coincides with the dimension of every
simplex. For 0-simplices and 1-simplices, the result is true by definition. Now,
assume that for every k < n, and every o k-simplex, B(c) = k. Let T be an
n-simplex, and let ¢y, 0, two maximal faces of 7. Then we have the following
subposet of P:

al/T\az
~

(S NAN%]



7-1 COMBINATORIAL VANISHING BOUND \

By the induction hypothesis, B(c1) = B(cz) = n—1 and B(oy nop) = n—2,
then B¢ has at least a connected component with two maximal objects. Therefore
B(t) = n.

n—2

Let A be an abelian group and A: P°? — Ab be the constant functor with value
A. In that case, the conclusion of Theorem 7.1.4 is the well-known fact that
H{(P; A) =~ H'(|K|; A) = 0 for i > d.

7.1.1

Here we present a direct application of Theorem 7.1.4. A filtered tree is a
filtered poset P whose Hasse diagram contains no undirected cycles. If P is a
filtered poset, a maximal tree of P is a filtered tree 7 such that 7 contains every
object of P. Then, if H the Hasse diagram of P, and 7 is a maximal tree of P, we
will show how the labelling function of P is controlled by the number of missing
arrows in 7 whose codomains have different degrees. That is,

#d(q) | p—>ge P\H}.

&Y. ¥

| N

Figure 18: Maximal tree of a given poset.
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Theorem 7.1.7. Let P be a filtered poset, and T be a maximal tree of H, the Hasse
diagram of P. Let D(T) = #{d(q) | p — q € H\T}. Then, for every functor
F : PP — Ab:

H'(P;F) =0

for every i > 2D(T) + 1.

We divide the proof of this theorem into two lemmas.

Lemma 7.1.8. Let P be a filtered poset. If there exists a maximal tree T of the Hasse
diagram H of P in which the target of every missing arrow in H\T have the same degree,
ie.,

#Hd(g) [p<qeH\T} =1,
then sup B < 3.

Proof. Let H be the Hasse diagram of P, and 7 be a maximal tree of H with the
desired property. Let Q be the family of the target of the missing arrows,

Q:={qeP|p<qeH\T}.

First, we prove that, for every p € quQ P~y we have B(p) < 1. Fixed
P € Ugeg P<q, there are no q € Q such that g € Pgp, because every g € Q
has the same degree. Then, every covering relation in P, is in the maximal tree
T; thus, we conclude that there are no circuits in P¢,. This implies that, for every
P € Ugeg P<q, we have B(p) < 1.

Next, assume by contradiction that there exists s € P such that B(s) = 4.
Choosing a minimal s such that B(s) = 4, we have that max{B(s’) | s’ < s} = 3.
By Definition 7.1.2, s closes a circuit in Bs, and this implies that there is a circuit
§ —> -« s5;— - —sin H with 2 < B(s;) < 3. But for every g € Q and every
cover relation p — g ¢ H\7T, we have that B(p) < 1. Therefore, there are no edges
p — g, with g € Q in the circuits — --- <~ s; - --- < 5, s0 it is in 7, which
contradicts that 7 is a tree. O

Lemma 7.1.9. Let P be a filtered poset. If T is a maximal tree of the Hasse diagram H
of ‘P with the property that

#d(q) | p—>ge H\T} =n,

then, sup B < 2n + 1.
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0 5

pat
s
-
-
v
-,

0 ——

.

Figure 19: A poset in which the bound described at Lemma 7.1.8 is optimal.

1
1° 3
. /

1 —2

Proof. As in Lemma 7.1.8, weset Q = {g € P | p —> g € H\T}, and let
ip <--- <ij<--- <iy be the sequence of degrees of g € Q. Let P; be the wide
subposet of P generated by the covering relations in

Tulp—qlp—q¢T,dg) <ij}

Let B; : P; — IN be the labelling function of P;. A direct computation shows
that for every p € P, Bj(p) < Bi(p) for every j < k; moreover, if d(p) < i;, then
Bj(p) = Bi(p).
We prove by induction that sup B; = 2j +1. For i = 0, the result holds by
Lemma 7.1.8. Now, assume that the result holds for i; and consider P;, 1.
Assume by contradiction that there exists s € Pj,1 such that Bj,1(s) = 2j +4,
and choose s a minimal with this property, i.e., we have

max{B(s') | s’ < s} =2j + 3.

By Definition 7.1.2, s closes a circuit in B;, this implies the existence of a circuit
s — -+« s5;— -« sin H with 2j + 2 < B(s;) < 2j + 3. But, by induction the
hypothesis, for every g € Q with d(q) = i;;1 and every p < q, Bj;1(p) < 2j + 1.
Then the circuits — -+ « s; —» - .- < s isin 7 which is a contradiction. O

It is possible to show that the bound introduced in Lemma 7.1.9 is optimal by

reiterating the poset in Figure 19; see Figure 2o0.
Proof of Theorem 7.1.7. This holds by applying Lemma 7.1.9 to Theorem 7.1.4. [

We obtain, as a direct corollary, the following result.

Corollary 7.1.10. Let P be a filtered tree, and F : PP — Ab be a functor. Then
HY(P;F)=0ifi> 1.
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\

Figure 20
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7.2

Given a functor F: P°P — Ab, the big deal with the F-truncability of an object
p € P is that it is expressed in terms of TF, more precisely in terms of M,TF.
However, (TF) [p_, is a fibrant replacement of F |p_,, and by Proposition 4.1.4,

H"(Pp; F) = H"(M,RF). (16)

In the particular case of m = h(MpRF), the truncability of the morphism
ep: F(p) — MpRF, is determined by the m-th cohomology group of M,RF,
that is, ¢, is truncatable if

H"(M,RF) = coker(M,RF"~" & M,RF™) = 0.

In this section, we prove that for every p € P, a homogeneous bound for the
higher limit of F|p_, induces a bound in the higher limits of F.
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Theorem 7.2.1. Let P be a filtered poset, and F : P°P — Ab be a functor. If for
every p € P, Hk(P<p; F) = 0 for every k = n, then:

HY(P;F) =0

for every k > n.

We divide the proof of this theorem into several lemmas.

Lemma 7.2.2. Let P be a filtered poset and F : P°P — Ab be a functor. If h(TF) = m,
then, for every 0 < n < m, there exist p € P such that h(TF(p)) = n. Furthermore, if
n > 0, we can select p € P such that h(M,TF) = n — 1.

Proof. 1If n = 0, by definition of TF (see Definition 5.2.8), every p € P of degree 0
verifies 1(TF(p)) = 0. Thus, assume that 0 < n < m.

We proceed by contradiction. Let n € IN with 0 < n < m such that 1(RF(p)) # n
for all p € P, and let S be the sub-poset of P given by:

S :={seP|h((TF);) > n}.

By hypothesis S is non-empty because h(TF) = m > n, so there exists some p € P
such that h(TF(p)) = m. Moreover, by Definition 5.2.8, S does not contain any
locally injective object because n > 0.

Now, let s be a minimal object in S, that is, #(TF(s)) > n, and for every t <s,
h(TF(t)) < n. This implies that h(M;TF) < n because

h(M;TF) = h(l7ijr<r51TF) < max{h(TF(t)) | t < s} < n.
If s is F-truncatable, we obtain a contradiction:
n < h(TF(s)) = h(cocyly(es : Fs — MsTF)) = h(MsTF) < n.
Then s is not F-truncatable, this implies the following inequalities:
n < h(TF(s)) = h(cocyl(es : Fs —> M;TF)) = h(M,;TF)+1<n

leading again to a contradiction. This implies that there exists at least a p € P
such that h(TF(p)) = n.
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To show that we can choose it with the additional property of h(M,TF) = n—1,
let p € P with h(TF(p)) = n > 0, minimal with this property, this is, for
every s < p, h(TF(p)) < n. Since p is minimal, h(M,TF) < n; therefore, by

Definition 5.2.8, s must be non F-truncatable and:
n = h(TFE(s)) = h(cocyl(F(s) — M,TF)) = h(MsTF) + 1 O

Now we know that the fibrant replacement TF does not jump any height,
the next lemma tells us that the higher limits of the functor F restricted to the
subcategory P, control the F-truncability of p.

Proposition 7.2.3. Let P be a filtered poset, F : P°P — Ab be a functor, and n be a
positive integer. The following are equivalent:

1. HY(P_,; F) = 0, for every p € P and k > n.
2. H"(P<y; F) =0, for every p e P.
3. The fibrant replacement TF has height h(TF) < n.

Proof. By the inductive construction of the fibrant replacement and Equation (16),

for every p € P, it is verified that:

H¥(P-y; F) = Hk(%m TF) = H*(M, TF). (17)
<p
The implication 1= 2 is clear. To show that 2=3, assume by contradiction

that #(TF) > n > 0. By Lemma 7.2.2, there exists an object p € P such that
h(TF(p)) = n+1and h(M,TF) = n. Then, by Equation (17):

H"(P~p; F) = H'(M,TF) = coker(d,_1: (M,TF)"" ! — (M,TF)").

However, H"(P~,;F) = 0 if and only if d,_; is an epimorphism if and only if
ep : F(p) — M,TF is truncatable so, by definition, TF(p) = cocyly(ep). Therefore,
h(TE(p)) = n # n + 1 which is a contradiction.

Finally, we need to prove 3=1. First, notice that from Equation (17) follows
that 1 is equivalent to that, for every p € P, and k > n, HF (MpTF) =0. Fixpe P,
since h(TF(p)) < h(TF) < n, it is enough to show that H"(M,TF) = 0.

There is no loss of generality in assuming that #(M,TF) = n and h(TF(p)) = n.
Therefore, e,: F(p) — M,TF must be truncatable, and hence the differential
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On—1: (MpTF)"~1 — (M,TF)" is an epimorphism. Thus, from Equation (17), we
conclude

H"(P~,; F) = H*(M,TF) = coker(d,_1: (M,TF)" ! — (M,TF)") =0. [

In the case of P being a filtered poset of finite length, we prove can relax the
bound in the hypothesis of Theorem 7.2.1 for a partial bound for the higher limits

of F|p_, for p of certain consecutive degrees.

Theorem 7.2.4. Let ‘P be a filtered poset of finite length, and F : P°P — Ab be a
functor. If there exists m < length(P) and n € IN such that, for every p € P with

d(p) < m, we have:
Hk(P<p;F) =0 forn<k.

Then, H*(P; F) = 0 for n + length(P) — m < k.
g

Proof. Let RF: P°P — Ch(Ab) be the functor defined by:

RF(p) = TF(p) ifd(p) <m,
cocyl(F(p) — MyRF) Otherwise.

Note that this is a fibrant replacement of F. By Proposition 7.2.3, for every p € P

with d(p) < m, we have:
h(RE(p)) = h(TF(p)) <n

Now, we prove by induction that, for every object p € P with d(p) = m + k for

some k > 0, we have
h(RF) < n+k.

The basis case is done. Now, assume the result is true for k — 1, and let p € P
with d(p) = k. Then,

h(REF(p)) =h(cocyl(F(p) — M,RF))
<h(MpRF) +1 < max{h(RF(q)) | g < p}+1
<n+k—1+1=n+k.

Then, h(RF) < n +length(P) — m which implies the desired vanishing bound. [
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/-3

A strategy that has been used in the literature is filtering a functor by subfunc-
tors such that their successive quotients take the value zero except on one object.
These last functors are called atomic functors. More precisely, given a filtered
poset P and an abelian group A, the atomic functor of A at pg € P, denoted by
A(A, po) : PP — Ab, is the functor defined by:

A(A, po)(p) = {A i =po

0 otherwise.

The goal of this section is to describe higher limits of atomic functors via ordinary

cohomology of the nerve of a subposet, inspired by the next example.

Example 7.3.1. Let P be a functor and R be a commutative ring with unit. Then,
the higher limits of the constant functor R: P°? — Modpy are isomorphic to the
ordinary cohomology of the geometric realisation of P with coefficients in R, see
[AKO11, IIL.5.4],

H*(P;R) = H*(|P[; R).

First, we characterise the higher limits of atomic functors in terms of (reduced)

ordinary cohomology.

Theorem 7.3.2. Let P be a filtered poset and pg € P. For every abelian group A:

H'(P; A(A, po)) = H(|Pspl; A).

Proof. Let A(A, po): P°P — Ab be the atomic functor at pg € P, and F: P°P — Ab
be the extension by zero of the constant functor A: 732};0 — Ab, thatis, F |'p>p0 =A
and F(p) = 0 for all p # po.

Notice that H'(P; F) =~ Hi( |P>pol; A). Thus, it is enough to prove that:
cocyl (A)° = A and, cocyl (A)' = cocyl (F)! fori > 0. (18)

The supports of both functors are contained in P~,, and it is an upper convex
poset. By Proposition 2.1.13, there is no loss of generality into assuming that pg
is the initial object of P.
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We prove Equation (18) by induction on the degree of the objects. For py, the
only object of degree 0, the result trivially holds. Next, assume that the result
holds for every object of degree less than n and let p € P of degree n.

Limits in the category of cochain complex are computed degree-wise; therefore,
it is verified that Mycocyl (A)° = A, and Mpcocyl (A) = Mpcocyl (F)'! for
i > 0. A short computation shows that cocyl(0 — Mpcocyl (A))? = A, and

cocyl(0 — Mpcocyl (A))i = cocyl(A — Mjcocyl (F))i_1

for each i > 0. O

Lemma 7.3.3. Let P be a filtered poset, {p;}icz be a collection of objects of P with the
same degree, and {A;}ic1 be a collection of abelian groups then:

HN(P; @D A(A;, pi)) = @ H*(P; A(A; pi)).
i€l i€l

Proof. This lemma holds since the direct sum of fibrant replacements, constructed
as in Chapter 5, is a fibrant replacement of the direct sum. O

Now, we are able to prove the main theorem of this section.

Theorem 7.3.4. Let ‘P be a finite filtered poset and F : P°P — Ab be a functor.
If there exists k > 0 such that, for every p € P, PNI”(\P>p];F(p)) =0, forn>k;
then

H"(P;F) =0 forn > k.

By Theorem 7.3.2 this previous result is equivalent to the following lemma.

Lemma 7.3.5. Let P be a finite filtered poset and F: P°P — Ab be a functor. If there
exists n > 0 such that H'(P; A(F(p), p)) = 0 for every p € P and every i > n, then

HYP;F) =0

for every k > n.

Proof. Let m be the length of P. Given 0 < k < m, we define F¥ : P°P — Ab to be
the subfunctor of F defined by F¥(p) = F(p) if p has degree less or equal to k; and
F¥(p) = 0, otherwise. By construction, there is a chain of natural transformation

of functors:
AN L Ny 2y o
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Given 0 < k < m, we define F¥) := coker(F¥~1 — F¥) the cokernel of the inclusion.
Notice that by construction, for every 0 < k < m FK) = Da(p)—r AF(p), p), and,
by hypothesis and Lemma 7.3.3,

H'(P;F)~H(P; @ A(F(p),p)= P H(P;AF(p),p) =0
d(p)=k d(p)=k

for every i > n.

Moreover, we have a short exact sequence of functors:
0> F15Fr 00
inducing a long exact sequence:

0 — HYP;F*1) — HY(P; FY) — HYP; FY) — HY(P FY) —
- = H{(P;F* 1Y) = HY(P; FX) - HI(P; F®)) - HHY(P; P 1) - ..

Now, we proceed by induction. For k = 1,
.. — H{(P; F%) - H{(P; F') - H{(P;FV) — ...
By Lemma 7.3.3, this exact sequence becomes

0— @ H(P;AF(p),p)) — H(P;F') > @ H(P;AF(p).p) — ...
d(p)=0 d(p)=1

By hypothesis, for every p € P, H(P; A(F(p), p)) = 0if i > n, then H (P;F!) =0
ifi > n.

Assume that H(P; F/) = 0 for ever i > n and every j < k. Then the long exact
sequence specialises to:
—0— H"Y P FY - B (P, F®) - 0 — H"2(P; F}) — ...

and, by hypothesis, Hi(P;F(k)) = @d(p):k Hi(P;.A(F(p),p)) =0,if i > n. Then
H(P; F¥) = 0 for i > n and every 0 < k < m. So, we conclude that H(P; F) = 0
fori > n. l
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Example 7.3.6. Let (W, S) be a Coxeter group, ] = S, < the Bruhat order on W.
Let W/ be the subposet of W defined by

W/ = {weW |ws>wforalls e J}.

Let P be the subposet of W/ obtained by removing the top element. Let p € P
and n = d(1) —d(p) — 2. By [BWS82, Theorem 5.4], the geometric realisation of
P>p is:

1. a n-sphere if P~ = W>p\{i}, or
2. contractible in another case.

Let p € P minimal with the property that the geometric realisation of P- is not
contractible and let n = d(1) — d(p) — 2. Then, for every functor F: P°P — Ab,
the homology groups verifies

ﬁi(|P>p|;F(p)) = 0 for every i > n.
Thus, by Theorem 7.3.4 we conclude

H'(P;F) = 0 for every i > n.






Chapter 8

SHEAF COHOMOLOGY OF CL-SHELLABLE
POSETS

Sheaf cohomology is an important tool in algebraic geometry, topology, and
combinatorics, and it has been extensively studied by researchers in these and

other fields. For example, Everitt and Turner show how Khovanov homology

[ET14] can be described as the cellular cohomology of a certain sheaf [ET15].

Recently, they have computed the cohomology of a certain sheaf in arrangement
lattices [ET22a] by the deletion-restriction method that they introduce in a previous
work [ET22b].

In this chapter, we focus on the sheaf cohomology of CL-shellable posets.

We begin by considering finite or Alexandroff Ty-spaces, where sheaves can be
identified with functors and sheaf cohomology can be understood as their higher
limits.

First, notice that Alexandroff Ty-spaces and posets are the same thing. Let P
be an Alexandroff Tp-space, and x € P. Let U, denote the minimal open set that

contains x. Then, the binary relation <, defined below, is a partial order for P.

x <yif x e Uy.
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Conversely, given a poset P, the family {P<,},cp defines a basis for the Alexan-
droff topology of P. With this topology, P is an Alexandroff Ty-space.

When P is an Alexandroff Tj topological space, every functor F: Open(P)P —
Modp verifies the SHEAF AXIOM:

SHEAF AXIoM: Let {U;} be an open cover of an open subset U € Open(P). If
(fi) € [ [; F(U;) verifies that for every i, ],

F(U; n Uy = Ui)(fi) = F(Ui n Uy)(fj);

then, there exists a unique f € F(U) such that it is mapped to every f; under
F(U; < U); see [Weig4].

Moreover, the cohomology of a sheaf F: Open(P)°? — Modp is isomorphic to
the higher limits of the functor £': P°P — Modpg under the identification P<, — p.
Thus, every functor F: P°P — Modpg can be interpreted as sheaf over P.

In the case of K being a shellable complex, since they have the homotopy type
of a wedge of k spheres of dimension dim K [Bj680], we have a description of the
sheaf cohomology of the constant sheaf R: P(K)°P — Modg:

RF ifi = dimK,
H(P(K)\{1,0,R)={R ifi=0, or

0 otherwise.

We take inspiration from the constant sheaf to abstract the elementary condition
that implies the sheaf cohomology vanishes in the non-extreme dimensions.

Let K be a shellable complex of dimension 7, and L be the face lattice of K. Let
R be a commutative ring with unit and F: L°? — Modpg the extension by 0 of the
constant functor R: (L\{O})Op — Modg. The functor F only fails to be fibrant
in objects of dimension 1, that is, for every ¢ € K of dimension dimoc # 1, the

natural map
F(o) - M,F

is surjective. This holds since for every 7,7’ < 0, the respective copies of R in T
and 7’ are identified under the maps 7 > v’ n T < 7/. Moreover, given Q < L_y,

the composite

F(0) —» MF — lim F
(¢) = MoF — lim
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is also an epimorphism if and only if dim ¢ # 1. In some sense, the surjectivity
of the natural map F(0) — M,F is stable under taking restrictions. We generalise
this property in the following definition.

Definition 8.1. Let P be a dual CL-shellable poset of length 1 > 2 equipped with
a recursive coatom ordering «, and F: P°? — Modpg be a sheaf. We say that
(P, F) has the stability property in codegree i € N, for 0 < i < n, if, for every object p
of degree d(p) = n —i, and every Q < P, compatible with the recursive coatom
ordering, the natural map

F(p) - lim F
(») Q

is an epimorphism.

This property will be fundamental in this section since it implies the nullity of
the respective cohomology module of the sheaf.

Theorem 8.2. Let P be a dual CL-shellable poset of length n > 2, i € IN such
that 1 <i <n—1,and F: PP — Modg be a sheaf. If the pair (P, F) has the
stability property in codegree i, then

H (P\{i};F) = 0.

We prove this theorem in the next section.

Example 8.3. Let K be a shellable complex of finite dimension 7, and P be the face

poset of K. By Theorem 1.1.5, |K| has the homotopy type of a wedge of n-spheres.

Let k be the number of spheres in the wedge,

k
K| =~\/s"
j=1

Furthermore, by Theorem 1.1.8, P is dual CL-shellable of length n + 2. Let R be a
commutative ring with unit and F: P°?P — Modpg to be the extension by 0 of the
constant functor R: (P\{0})°P — Modg. Then, the pair (P, F) has the stability
property in codegree i # n = d(P) — 2. From Theorem 8.2 follows that

H{(P\{1};F) = 0,
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fori # 0,d(P) — 2 = n. In addition, H°(P; F) = lim F = R and, by Theorem 5.2.11
and a short computation, H"(P; F) = Rk for some k. Therefore, we recover the
well-known result:

RF if i = dimK
HY(K;R) = H(P;F)={0 if0<i<dimK
R ifi=0

3.1

Let P be a poset, and Q be a subposet of P. Given F : P — Modg, the
restriction morphism induced by the inclusion @ — P is denoted by

Resgz IimF — lim F.
P Q

First, we need to prove the following technical lemma which will be essential for
the inductive step.

Lemma 8.1.1. Let P be a dual CL-shellable poset, and F: P°P — Modpr be a sheaf.
Let p € P, « be a recursive coatom ordering in P<p, Q & Py be a non-empty subset
of coatoms compatible with the recursive coatom ordering. Let r be the first coatom of
P<p\Q, this is, the element r € Py, with the property that if s € P, with s < r, then
s € Q. Then, for i > 0, if the composite

cocyl (F)' (r) — (M,cocyl (F))' — lim cocyl (F)'
Cr)

admits a section, then the restriction

Res'2°: lim cocyl (F)' — lim cocyl (F),
Q@ Quir) yiE) Q@ yHE)

also admits a section.

Proof. To simplify the notation, we denote by Q, the union Q u {r}. Leti > 0.
By hypothesis, there exists a section s: lim/c(,), cocyl (F)" — cocyl (F)' (r) of the
composite morphism

cocyl (F) (r) — (M,cocyl (F))' — <1Ci%1}> cocyl (F)' .
r
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Given x = (x7) € limg, cocyl (F)' < [ Igeq cocyl (F)' (9), we claim that the

tuple
(s (Resig(> )>( x)), x) € cocyl (F H cocyl (F
qeQ

defines an element of lim g y cocyl (F )i. Since Q is compatible with the coatom
ordering and r is the first element in P<;,\Q, it follows that Q, is compatible with
the recursive coatom ordering. By Lemma 1.1.16, {(Q,) u {p} is a CL-shellable
poset of length d(p), and, by Lemma 1.1.14, the full subcategory of {Q,) whose

objects are those of degree d(p) — 1 and d(p) — 2 is a final subcategory of (Q;).

Therefore, it is enough to check that, for every g € Q and every t € P<, n P<,, we

have cocyl (F) (t < q)(x4) = cocyl (F) (t <7)(s (Reség(> )>( x))).

Since x € lim g, cocyl (F )', the element

Q@
Res<C( )>( )€ <1cl(rf)1> cocyl (F tel:[ cocyl (F
has coordinates Resggé»(x)t = cocyl (F) (t < q)(x4), where q is any element in Q

such that t < g. Moreover, since s is a section for Resggé)> the composite,

<1C1(rr)1> cocyl (F)' 5 cocyl (F)' (r) — cocyl (F)' (t)

is the projection to the t-coordinate

cocyl (F)i (r) > M,cocyl (F)i

[ !

; lim )y cocyl(F)!

lim/c (), cocyl (F)" -----=---- + limc(y), cocyl (F F)' —— cocyl (F) (1)

Thus, we obtain the desired equality. O

Next, we prove that the cocylinder of a sheaf verifies the stability property in

any codegree.

Lemma 8.1.2. Let ‘P be a dual CL-shellable poset, and let F: P°P — Modpg be a sheaf.

Then, for every p € P, every recursive coatom ordering < in Py and every non-empty
subset Q < P, compatible with the recursive coatom ordering, the restriction morphism

Res<Q<>” Mjcocyl (F) — 1<1(121>1 cocyl (F)
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is a degreewise split epimorphism.

Proof. Let i > 0. We denote by Ressz<>”: (Mpcocyl (F))" — lim,g, cocyl (F)" the
restriction morphism at the fixed degree i. We proceed by induction on the
degree of the object p € P. If p is of degree 1, then the explicit description of the
morphism gives the result (see Theorem 5.2.11 with n = 1).

We assume the statement is true for every object of degree less than 7, and let
p € P with d(p) = n. If Q = Py, the restriction morphism is just the identity,
and we are done. Otherwise, we proceed as follows. Let r be the first element in
r € P<p\Q. To shorten the notation, again, we denote by Q, = Q U {r}.

We start by constructing a section of the restriction:

Reséggz }gg cocyl (F)' — 1<1(121>1 cocyl (F)'

by using [Lemma 8.1.1. That is, we have to prove that there exists a section for the
composite:

cocyl (F) (r) > M, cocyl (F) > lim cocyl (F)'.
(C(r))

We will do it by constructing a section of each morphism in the composition.

First, we prove the existence of a section sp for the morphism

1 : 1
M, cocyl (F)" — <1C1g}> cocyl (F)".

There are two options regarding C(r). Either C(r) = P, or C(r) & P<,. In the
first case, sg is the identity. In the second one, we need to apply an induction
argument. By Definition 1.1.9, for the chain ¢ = (r < p), we have a linear order for
P~; in which C(r) is an initial segment. Therefore, by Lemma 1.1.16, (C(r)) u {r}
is a CL-shellable poset of length d(r) = n —1 < n. Then, the section sy exists by
induction hypothesis.

Next, by Proposition 5.2.4, the matching morphism cocyl (F) (r) — M,cocyl (F)
is a split epimorphism, so there exists a section s;: M,cocyl (F) — cocyl (F) (7).
Then s; o s is a section of cocyl (F)' (r) — limc(,), cocyl (F)'.

Finally, repeating this argument finitely many times with the remaining objects
in P-,\Q we construct the desired section. O

The second step of the proof consists in showing how the stability prop-
erty in a sheaf F is translated in a weaker stability property for the subfunc-
tor of its cocylinder cocyl (F) obtained by taking object-wise the kernel of the
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differential. More formally, given a sheaf F: P°°? — Modg, we denote by
ker cocyl (F)' : PP — Modpg the sub-functor of cocyl (F)i : PP — Modpg de-
fined on objects by

ker cocyl (F)’ (p) = ker(dp: cocyl (F)! (p) — cocyl (F)'*! (p))-

Given p € P, i = 0 and Q = P, compatible with some recursive coatom
ordering, by Lemma 8.1.2, we can consider lim g, cocyl (F )" as a subcochain
complex of Mpcocyl (F)'; therefore, by abuse of notation, we denote by 7 the
composite of the projection given by the cocylinder, 7: cocyl (F)' — Mpycocyl (F ),

<p

followed by the restriction, ReszjQ> : Mycocyl (F)' — lim g, cocyl (F )

7: cocyl (F)' (p) — lim cocyl (F)".
(Q
Indeed, this projection is a cochain complex morphism. Therefore, it can be

restricted to the kernel of the differential. We denote by 1y this restriction:
19 ker cocyl (F)! (p) — 1<1é1>1 ker cocyl (F)'.

If P is a dual CL-shellable poset, and hy « h; « --- « hy is a recursive coatom
ordering for P, we denote by Py to be the subposet of P generated by the first

k — 1 coatoms, i.e.,

Pr = <ho, .. hg_q).

Lemma 8.1.3. Let P be a dual CL-shellable poset, and « be a recursive coatom ordering
for P. Let F: P°P — Modg be a sheaf and i > 0. If, for every coatom h, the morphism:

o kercocyl (F) ™! (h) — lim ker cocyl (F)' !
: YL(E)" (1) — lim kercocyl (F)

is an epimorphism, then H'(P\{1}; F) = 0.

Proof. We assume without loss of generality that d(P) > 2; otherwise, there
is nothing to prove. Let P be a dual CL-shellable poset of length n > 2 with
recursive coatom ordering «, and let g « hy - - - < hy, be the coatom of P ordered
by «. By Proposition 5.1.12, H(P; F) = Hi(lim cocyl (F)). Then, H!(P; F) = 0 if
and only if the sequence

lim cocyl (F)'~! 7, lim cocyl (F)' -, lim cocyl (F)"+!

P\{1} P\{1} P\{1}
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is exact. Let a = (a;) € lim cocyl (F)' < ]_[;”:0 cocyl (F)' (hj) such that da = 0. We
construct, by induction on the ordering hy, hy, ..., hy, an element B in the limit
lim cocyl (F)" ! such that 98 = a.

Since « € lim cocyl (F )" with dx = 0, the projection on cocyl (F) (hg) is a cocycle
ie., dag = 0. By Definition 5.2.9, H(cocyl (F) (hg)) = 0 because i > 0. Then, there
exists Bo € cocyl (F )ii1 (Cp) such that 0By = ag. Now, assuming that, there exists
a tuple (Bo,...,Br-1) € limp, cocyl (P)i_l such that, for every j = 0,...,k—1,
0B;j = aj, we construct By € cocyl (F )~ () with the analogous conditions, this
is, 0B = ax and (Bo, - - ., Bx) € limp,,, cocyl (1—”)1‘*1 as follows:

As in the case of hy, since da; = 0, we choose any f € cocyl (F F)'~! () such that
0B = ax. If (Bo, ..., Br_1, B) defines an element in the limit hmpk , cocyl (F )y,
we are done. Otherwise, consider v = () € [ [,ec(,) cOcyl (F )" (r), described

by:
Yr = cocyl (F) (r < hj)(B;j) — cocyl (F) (r < ) (B) € cocyl (F)' =1 ().

Note that given r < h, it is possible having more than one / with the property
that h; « h and r < hj, . But, since (By,...,Br—1) defines an element in
limp, cocyl (F)"1 if hj, hy < hy have the property that r < i, I, then

cocyl (F) (r < hj)(Bj) = cocyl (F) (r < hy)(B;)-

We claim that 7y € hm<c(hk)> ker cocyl (F )"~1. First, we prove that 7y belongs to the
limit limc, ), cocyl (F ) . But this is true because 7 can be written as a sum
of the image through the projection cocyl (F)' ™! — limcy,), cocyl (F ) of —B,
and the image through the restriction limp, cocyl (F )yt lim/c(p, ), cocyl (F )it
of (Bo,-..,Pr_1). Then we only need to check that 0y = 0. Notice that cocyl (F)
is a cochain complex-valued functor; in particular, for every p < g, the mor-
phism cocyl (F) (p < q) commutes with the differential. Therefore, for every
j=0,... k-1

j)(Bj) — cocyl (F) (r < hy)(B))
7)(B))) — d(cocyl (F) (r < hy)(B))

1j)(0B;) — coeyl (F) (r < ) (0B)

hj)(a;) — cocyl (F) (r < hy) ()

(
(

0vr = d(cocyl (F
= 0(cocyl (F
= cocyl (F

r < h;
r < h;

~—  —

)(r <
= cocyl (F) (r <
=0.
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By hypothesis, mg: ker cocyl (F)'™! () — limc(p, ), ker cocyl (F)'!is an epi-
morphism, therefore there exists an element w € ker cocyl (F )i*1 (hy) such that
7o(w) = <. Then, we define By = B + w.

Now, we have to check that B verifies the conditions described at the beginning.
By definition, 0B = 0B — dw = 0B = a;. To check that the tuple (B1, B2, - -, Br)
defines a compatible tuple, we proceed as follows. By Lemma 1.1.16, Py, U {1} is
dual CL-shellable of the same degree, and, by Lemma 1.1.14, the full subcategory
whose objects are the ones of degree n — 1 and n — 2 is final in Py 1. We are thus
left to prove that, for every j =0,...,k—1,

cocyl (F) (r < 1j)(B)) = cocyl (F) (r < hy)(Br)-

But this is clear by the definition of By.

Finally, repeating this process for every coatom of P, we obtain the desired
B € limyp, (3, cocyl (F)'~! such that 0 = a. O

Finally, we are able to prove the main theorem.

Theorem 8.2.  Let P be a dual CL-shellable poset of length n > 2, and let
F: P°° — Modg be a sheaf. Given 1 < i < n — 1, if the pair (P,F) has the
stability property in codegree i, then

H (P\{1};F) = 0.

Proof. We proceed by induction on the codegree of the stability property of the
pair.

Let F: P°P — Modp be a sheaf over a dual CL-shellable poset with coatom
ordering «. Assume that the pair (P, F) has the stability property in codegree 1.
In particular, for every coatom h, the natural map F(h) — limcqy F is an
epimorphism because C(/) is compatible with the recursive coatom ordering. By
Lemma 8.1.3, it is enough to check that, for every coatom /, the morphism

o ker cocyl (F)° (h) — lim ker cocyl (F)°
: y1(E)’ (i) — lim ker cocyl (F)

is an epimorphism.
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If C(h) = @ there is nothing to prove; otherwise, as there is a natural iso-
morphism between ker cocyl (F )° and F, we have the following commutative
diagram:

ker cocyl (F)° (h) —— limc(p), ker cocyl (F)°

l; |=

F(h) > lim<c(h)> F.

By hypothesis, the natural morphism F(h) — lim ), F is an epimorphism. So
we conclude that ker cocyl (F )0 (h) — limc(p,), ker cocyl (F )% is an epimorphism
too.

Now, assume that, for every i < n, and every pair (P’, F') with the stability
property in codegree i, we have H(P’\{1}; F') = 0. Consider a pair (P, F) with
the stability property in codegree n, and « a recursive coatom ordering for P.
Again, by applying Lemma 8.1.3, we have to check that, for every coatom & the
morphism

. n—1 . n—1
rg: kercocyl (F)" " (h) — <}31(%> ker cocyl (F)
is an epimorphism. We assume without loss of generality that C(h) # <. Notice

that the following diagram is commutative:

TTo 1

ker cocyl (F)" ! (h) > limc (), ker cocyl (F)"~

w T

cocyl (F)"™2 (h) ——— Mjcocyl (F)" 2 —— limcyy, cocyl (F)" 7,

where the vertical morphisms are the respective differentials and the bottom
horizontal morphism is the composition of the projection given by the mapping co-
cylinder cocyl (F)" 2 (h) — Mjcocyl (F)" 2 followed by the restriction morphism
My cocyl (P)”_2 — limc )y cocyl (F)”_Z. We prove that 71 is an epimorphism by
proving that every other morphism in the diagram is onto.

By exactness of cocyl (F) (h), the image of its differential at height n — 2,
cocyl (F)"~2 (h) — cocyl (F)"~! (h) is just ker cocyl (F)" ! (h), thus the first verti-
cal map is an epimorphism. Since cocyl (F) is a fibrant functor, the morphism
cocyl (F)"~? (k) — Mj,cocyl (F)"~? is an epimorphism and, by Lemma 8.1.2, the
restriction map Mj,cocyl (F)"2 - limc(p,), cocyl (F)"~2 is also an epimorphism.

Finally, notice that C(h) is compatible with the recursive coatom ordering.
Therefore, by Lemma 1.1.16, the poset (C(h)) u {h} is a dual CL-shellable poset
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of length d(h) = d(P) —1 = d — 1, and the pair ((C(h)) U {h}, F |c(n)un}) has the
stability property at codegree n — 1; this is clear since

d(P) —n =d(ChY) uih) +1—n=dh) +1—n=d(h) — (n—1).

Then, by hypothesis induction H"~'((C(h)); F) = 0. So, we conclude that the
differential

lim cocyl (F)" 2 — lim ker cocyl (F)"
(C(h)) yHE) (C(h)) yHE)

is an epimorphism. O

3.2

Let V be a finite-dimensional k-vector space, H be a finite set of hyperplanes
of V, and Ly the arrangement lattice of H. For every i > 1, we define the i-linear
forms sheaf on Ly to be the sheaf A/(—)*: L;)f — Vecty that sends every W € L to

the i-linear forms of W, i.e.,
A'Hom(W, k) = A'TW*,

and W’ < W to the restriction A/TW* — Af(W')*,

Theorem 8.2.1 ([ET22b]). Let V be a finite-dimensional vector space, H be a
finite set of hyperplanes of V, and Ly, the arrangement lattice of H. For every
j < d(Ly) —i— 2, the j-th cohomology of the i-linear forms sheaf on Ly\{1}
vanishes, this is:

HI(La\{i}; AT(—)") = 0.

Recently this result has been proven by Everitt-Turner [ET22b] using a deletion-
restriction method [ET22a]. Here, we prove it by showing that i-linear form sheaf
verifies the stability property on the required codegree. In order to prove it, we

will need the following lemmas.
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Lemma 8.2.2. Let V be a vector space of dimension n, H be a finite set of hyperplanes,
and Q < H be a set of independent hyperplanes of V. Let Ly be the arrangement lattice

of H. Then, for every i < n — 1, the natural morphism induced by the restriction:

A'VF — lim Al(—)*
(Q

is an epimorphism. Moreover, if |Q| = i + 1, it is an isomorphism.

Proof. Let hy,..., h, be the hyperplanes in Q. By the independence of Q and
using an argument similar to the proof of Lemma 1.1.19, there exists a basis
B ={eq,...,en} of V* such that the set

By = {(eal) (e2li) -, @l (eals)}

is a basis of h]* By abuse of notation, we denote just by es the 1-form restricted to
h, es|y, for every h e Q.
Now, for i < dim(h;) = n —1, a basis of Aih;‘ is given by:

AiB]'IZ {ekl/\esz-.-/\eki|1<k1<k2<---<ki<n,j;ékl,...,ki}.

By Lemma 1.1.14, an element (x;) € lim g, Al(—)* is an element of the product
]_[]r-zl Aih;‘ with the property that, for every j # j’ and every tuple (k1,kp, ..., k;)
with 1 < k; < ky < -+ < k; < n and ky,ky, ..., k; ¢ {j,jl}, the (kl,. . -/ki)'

coordinate of X; and Xjr coincides:

(1) (kg ki) = (Xj7) (ke gy i)

Therefore, a basis of lim g, Al(—)* is the union of the basis AiBj, and this is a
subset of the basis of A'V* induced by the basis B,

AiB;: {ekl/\esz---/\eki|1<k1<k2<~--<ki<n}.
Moreover, if r > i + 1 for every tuple (ky, ..., k;) suchthat1 <k; <--- <k; <mn,

the element e;, Aep, A--- Aeg, € A'B is in the basis AiB]- of Aih;.", where j is any
element of the set {1,...,r}\{ky, ko, ... k;}. O

As a direct corollary, we obtain the following result.
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Corollary 8.2.3. Let V be a vector space of dimension n, H be a finite set of hyperplanes,
and L the arrangement lattice of H. Let Q < H be a basis of L. Then, if i < d(V), the

natural morphism induced by the restriction:

A'VF > lim Al(—)*
(Q

is an isomorphism

Proof. Notice that i < d(V) = dimV —dim0 < dim V. Moreover, Q is basis, in
particular, an independent set of coatoms and, by Corollary 1.1.20, |Q| = d(V) > i.
We are done after applying Lemma 8.2.2. N

Lemma 8.2.4. Let V be a finite-dimensional vector space and H be a finite set of
hyperplanes in V. Let L be the arrangement lattice of H, and < be a basis-like recursive
coatom ordering for L. Suppose W € L, and Q is a subset of coatoms of L<w compatible
with the recursive coatom ordering. Then, the natural morphism induced by the restriction
map,
e: ATW* — lim Al(—),
(Q
is an epimorphism if dim W > dim 0 + i + 2.

Proof. Let ¢ be an irreducible chain from W to 1 that makes Q compatible with the
recursive coatom ordering, and B be the basis of the geometric lattice L<y given
by the first coatoms in (L., <.). By the compatibility of Q with the recursive
coatom ordering, then, either Q < B or B < Q.

In the first case, Q < B is an independent set of coatoms of the geometric
lattice Lew with i <i+2+ dim 0 < dim W. Then, according to Lemma 8.2.2, the
natural morphism

e: A'W* — lim Al(—)*
(Q

is an epimorphism. Notice that it is an isomorphism if Q = B; see Corollary 8.2.3.

In the second case, where B < Q, we prove that the natural morphism

e: A'W* — lim Alw*
welQ)

is an isomorphism. The composite

a7 € . i, % Resg . i, %
A'W* — lim A'w®™ — lim A'w?,
welQ) we(B)
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is the morphism induced by the restriction. This is the extremal case of Q = B,
and we have shown that it is an isomorphism. Thus, to show that ¢ is an

isomorphism, it is enough to prove that the restriction morphism:

Resg: l<i(5r>1Ai(—)* — l<i]§r>1Ai(—)*

is also an isomorphism. Let wy, wy, ..., w)Q| be the elements of Q ordered by «.

We begin by proving the injectivity of the restriction morphism. Suppose, by
contradiction, that there exists a = (a) € limg, A(—)* < HLQ=|1 A'w? such that

a # 0 and Resé%> (a) = 0. Therefore, there exists w; € Q\B such that a; # 0.

By Lemma 1.1.21, there exists By = B such that By U {w;} is a basis of Ly,
and B’ = {wjnwy | wy € B} © C(wj) is a basis. By functoriality, for every
wynwjeB,

“j|wkmwj = “k|wkmwj/

and, by hypothesis, a; = 0, so ocj|wkmw], = 0. The set B’ is a basis of the geometric
lattice L<q,, and d(wj) = d(W) =1 >i+2—1=i—1. Then, by Corollary 8.2.3,
the natural morphism induced by the restriction

: Alw? — lim Al(—)*
) j — lim (—)
is an isomorphism. but, ¢(a;) = (ajlw;nwy) € ijmwkeB, Ai(w]- N wi)® which is 0;
this contradicts that a; # 0.

Next, we show that the morphism is onto. Let Rj = {wo, w1, ..., wj} be the set
of the first j coatoms of L_yy. For every j = d(W),d(W) +1,...,|Q| —1, we prove
that the restriction morphism,

Res,™': lim A'Y(=)* — lim A'(—)%,
esg, <121]rj}> (—) 55; (—)

is an epimorphism.

Let « be any element of the limit 1irn<Rj> Al(—)* of coordinates (a;) € Hé:l iwg,
and let D < C(wj41) a basis of the geometric lattice L<w,,,. As before, we
apply Corollary 8.2.3, because D is a basis of the geometric lattice L<.,,, and
d(wj;1) > i +1, obtaining that the natural map induced by the restriction

 Alw?y — lim A'(—)*
¢ w]+1 <1g>1 ( )
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is an isomorphism. Then, We claim that the element a;,; € A'w},; defined by

_ R;
341 = ¢ (Respy (a))

verifies that the tuple (a1, a2,...,aj,aj,1) € H{S: Alw belongs to lim<Rj+1> A(—)*.

By Lemma 1.1.14, it is enough to prove, for every s < j + 1, that the following
identity holds:

“s’wsmwﬂ_l = “j+1|wsmwj+1- (19)
If ws N wjy1 € D, then the identity holds by definition.

Otherwise, by Lemma 1.1.21, there exists Dy & D such that Dy U {ws N wj+1} is
a basis of ng]. .1 the set

D = {wkmws N Wit ’ Wy € Do}

is a basis of Lé(wsmwj+1)-
As « is an element of the limit limR]. Ai(—)*, for every ws n Wj41 N Wy € D/, it is
verified

Oés|wsmw]~+1mwk = 04k|wsmwj+1mwk.
Moreover, by definition of Xji1, it coincides with Xy |wsmwj 1AWy
Next, the morphism induced by the restriction
/ i * . i *
s A ws N w;j — lim A'(—
¢ Ny nawy)” = lim A)
is an isomorphism because d(ws N wjy1) = d(W) -2 >i+2-2>1i,and D’ is

basis of L<w,~w

i417 S€€ Corollary 8.2.3. In particular, it is injective and,

4’/(0"+1’wsmw-+1) = (“k|wsmw'+1ﬂwk) € Ai(ws Nwjy1 N wg)®.
) j J )
wsmw]-+1mwkeD’

This implies Equation (19) holds. O

Proof of Theorem 8.2.1. Let L = Ly and « be a basis-like recursive coatom ordering
for L. By Theorem 8.2, it is enough to check that the pair (L, A’(—)*) has the
stability property at codegree j < d(L) —i —2.
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So, let W € L of degree d(W) = d(L) —j > i+ 2 and Q be a subset of coatoms
of Ly compatible with the recursive coatom ordering. Then, by Lemma 8.2.4,
the natural map induced by the restriction map

A'W* — Hm A(—)*
(Q

is an epimorphism, and this concludes the proof. O
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colimit, 44
left, 40
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right, 41

Kan extension, 32
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Latching
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geometric lattice, 18
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