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I N T R O D U C T I O N

Derived functors of limits and colimits, also known as higher limits and higher
colimits, are powerful tools that arise naturally in various problems related to
homotopy theory, homological algebra, and combinatorics. They can be seen as a
generalised version of cohomology (resp. homology) with twisted coefficients in
a functor F for a small category C,

Ri
plimp´qqpFq “ Hi

pC; Fq, Lipcolimp´qqpFq “ HipC; Fq.

In the realm of homotopy theory, higher limits have proven to be an invaluable
tool for studying the cohomology groups of spaces that are constructed piece-wise.
Bousfield and Kan’s seminal work [BK72] established a deep connection between
algebraic topology and simplicial methods in homological algebra by describing
a spectral sequence that relates the cohomology groups of the homotopy colimit
of a functor with the limit of the cohomology groups of the functor. The initial
page of these spectral sequences can be expressed in terms of higher limits:

Hi
pC; H j

pFqq ùñ Hi`j
phocolimCFq.

I
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This implies that the lim-acyclicity of the functor H jpFq, for every j ě 0, guarantees
that cohomology and homotopy colimit commute.

This spectral sequence yields an interesting obstruction theory to determine
the existence and uniqueness of maps from a homotopy colimit. This dates back
to Wojtkowiak’s work [Woj87]. In detail, let F : C Ñ Top be a functor over a small
category C. The restriction morphism gives rise to a map:

„

hocolim
cPC

Fpcq, X
ȷ

ÝÑ lim
cPC

rFpcq, Xs, (1)

that decomposes a continuous map f : hocolim F Ñ X into a compatible tuple,
up to homotopy, p fc : Fpcq Ñ XqcPC of continuous maps. Then, it is natural to ask
if a compatible tuple of maps p fcq lifts to a map f : hocolim F Ñ X. This question
has a positive answer if the pn ` 1q-st higher limit of the functor αn : Cop Ñ Ab,
described by αnpcq “ πnpmappFpcq, Xq, f pcqq, vanish, that is,

Hn`1
pC, αnq “ 0, for all n ą 0.

Moreover, the uniqueness of the map f is related to the vanishing of the n-th
higher limit of the same functor.

This fundamental concept has been well studied and used successfully in the
literature; see Jackowski, McClure, and Oliver’s survey [JMO94]. There are more
recent examples of related problems, such as the obstruction for the existence
and uniqueness of the classifying space of a fusion system, as presented in Broto,
Levi, and Oliver’s work [BLO03], or the existence of homotopy representations
for compact p-local groups, shown by Cantarero and Castellana [CC17].

These examples demonstrate the fundamental need to provide conditions of
acyclicity for functors or, at least, establish vanishing bounds for their higher
limits. The most significant results for the lim-acyclicity of functors over orbit
categories are associated with Mackey functors [JM92, DRP15], and Lambda
functors [JMO92a, JMO92b]. Concerning posets, the Mittag-Leffler conditions are
widely recognised [Wei94], and there are also conditions related to projectivity
[DR09] or with lower factoring sections [KL22]. Futhermore, higher limits over a
category can be reduced to higher limits over posets through a spectral sequence
[Sło01].
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In sheaf theory, higher limits over posets play a central role since they compute
the sheaf cohomology. Note that finite T0-spaces can be identified with finite
posets via the Alexandroff topology, and by McCord’s theorem [McC66], every
simplicial complex has a finite model, up to weakly homotopy equivalence. Therefore,
sheaves over finite T0-spaces or simplicial complexes can be seen as sheaves over
posets.

a c d b

a

d

b

c

a

d

b

c

Figure 1: Finite model of the sphere S1.

Under this identification, if P is a finite T0-space, the cohomology of a sheaf
F : OpenpPqop Ñ ModR is isomorphic to the higher limits of pF : Pop Ñ ModR,
where pF is the composite of restriction of F to the minimal open sets Pďp followed
by the projection Pďp ÞÑ p.

H˚
pOpenpPq; Fq – H˚

pP ; pFq.

This manifests that it is not only fundamental to have vanishing bounds of
higher limits but also to be able to compute them explicitly. Some examples
of computational techniques are provided by Everitt-Turner for cellular posets
[ET15] and for geometric lattices [ET22b]. Additionally, Curry’s thesis [Cur14] has
shown how sheaf cohomology (higher limits) over finite posets is an extraordinary
tool in data analysis and engineering.

In this thesis, we develop a new technique to compute higher limits and
colimits using tools from homotopy theory, replacing the classical injective (resp.
projective) resolution [Wei94, Chapter 2] that produces the cochain complex
associated with the functor [AKO11, Section III.5.1] with a fibrant (resp. cofibrant)
replacement that we construct explicitly.



IV introduction

Categories that naturally emerge in homotopy theory or group theory are
categories in which every endomorphism is an isomorphism, and most of them
are equipped with a N-filtration; we name these categories filtered EI-categories,
see [Lüc89]. By Berger and Moerdijk’s work [BM11], filtered EI-categories admit
a generalised Reedy structure. Given a filtered EI-category, a commutative ring
with unit R is said to be C-bijective if and only if | Autpcq| is invertible in R for
every c P C. From now on, C will be a filtered EI-category and R a C-bijective
ring.

The first step to setting up our homotopy theoretical framework is to identify
the category of functors FunpC, ModRq with the full subcategory of those functors
in FunpC, ChpRqq which take values concentrated in degree 0. Next, using the
generalised Reedy structure on C and the C-bijectiveness of R, we introduce a
model category structure on the category of functors FunpC, ChpRqq, which we
named the direct model category structure, see Proposition 5.1.8, in which higher
colimits can be computed by a cofibrant replacement.

Proposition 5.1.15 Let C be a filtered EI-category, and R be a C-bijective ring. Given
a functor F : C Ñ ModR, then,

HipF; Cq “ Hipcolim QFq

where QF : C Ñ ChpRq is a cofibrant replacement of F in the direct model category
structure.

As a direct corollary, we obtain that every cofibrant functor is colim-acyclic.
A functor F : P Ñ ModR over a filtered poset is cofibrant in the direct model
category if and only if the natural morphism

colim
qăp

Fpqq Ñ Fppq

is injective for every p P P .

One of the consequences of this result is that we characterise pseudo-projective
functors over filtered posets [DR09] as cofibrant functors in this model category
structure.
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The functor F is said to be pseudo-projective if for every p P P and every element
‘qăpxq P

À

qăp Fpqq, the condition:

ÿ

qăp
Fpq ă pqpxqq “ 0

implies that xq P ImFpqq “
ř

kăq Im Fpk ă qq for every q P maxtq ă p | xq ‰ 0u.

Theorem 6.10 Let P be a filtered poset, and F : P Ñ Ab be a functor. Then F is
cofibrant if and only if it is pseudo-projective.

Moreover, we define Mackey functors over posets inspired by the classical
Mackey functors over the orbit category of a group but restricted to the subcate-
gory of normal subgroups. Finally, define weak Mackey functors by dropping
the contravariant functoriality and the meet-semilattice constraint. With this
definition, we can now prove the following theorem.

Theorem 6.8 Let P be a filtered poset and F : P Ñ Ab be a weak Mackey functor
with a quasi-unit. Then, F is pseudo-projective, and hence, it is colim-acyclic.

Dualising, we jump to the category of contravariant functors FunpCop, ChpRqq

where the inverse model category structure Proposition 5.1.3 allows us to compute
higher limits via fibrant replacement, see Proposition 5.1.12. As a direct corollary,
we obtain that given a functor F, a bound for the height of its fibrant replacement
RF induces a vanishing bound for its higher limits.

In general, computing fibrant replacement is not an easy task. Nevertheless, one
of the main advantages of our method is that, by the combinatorial structure of the
generalised Reedy category, we construct a fibrant replacement of a given functor
inductively. Roughly speaking, given a functor F : Cop Ñ ModR, constructing
a fibrant replacement becomes, for every c P C, a factorisation problem. The
method consists of choosing by induction on the filtration, for every object
c P C, a cochain complex RFpcq together with two morphisms, an epimorphism
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RFpcq Ñ limsăc RFpsq, and a morphism that induces isomorphism in cohomology
Fpcq Ñ RFpcq, such that the following square commutes:

Fpcq limsÑc Fpsq

RFpcq limsÑc RFpsq.

„

The mapping cocylinder of the composite, see Definition 5.2.3, provides a standard
choice. However, this choice is not always the best for providing vanishing bounds
since it increases the height of the functor in each step. To solve this inconvenience,
we provide a truncated version of the mapping cocylinder that does not increase
the height of the functor. As one can expect, this truncated version cannot always
be used. But, when possible, it is the key in the proof of the vanishing bounds
that we describe next, and it is based on the following result.

Corollary 5.1.14 Let C be a filtered EI-category, R be a C-bijective ring, and
F : Cop Ñ ModR be a functor. If RF : Cop Ñ ChpRq is a fibrant replacement of F
such that hpRFq “ n, then

Hi
pC; Fq “ 0

for every i ą n.

The first vanishing bound presented in this thesis is about the combinatorial
aspects of the given poset. The strategy consists of labelling the poset with
a function that indicates the possibility of using the truncated version of the
mapping cocylinder. The labelling of a poset P is a function B : P Ñ N that
coincides with the degree for objects of degree 0 and 1 and, inductively, for an
object p P P , let n “ maxqăp Bpqq. If p closes a circuit using only the objects with
labels n and n ´ 1, then we label Bppq “ n ` 1; otherwise, we label Bppq “ n; see
Figure 2.

Theorem 7.1.4 Let P be a filtered poset, and B : P Ñ N its associated labelling
function. For every functor F : Pop Ñ Ab,

Hi
pP ; Fq “ 0,

if i ą sup B.
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Figure 2: A labelled poset.

A direct application of this result is that we can produce a vanishing bound
for a poset P that depends on a filtration P0 Ă ¨ ¨ ¨ Ă Pn “ P , where P0 is a
maximal tree of P and , fixed a degree ni, Pi is obtained by adding to Pi´1 every
missing arrows whose codomain have degree ni; see Figure 3 where the degrees
are indicated vertically. Thus, the number of elements in this filtration induces a

P0 P1 P2 P “ P3

Ĺ Ĺ Ĺ

Figure 3

vanishing bound for every functor P Ñ Ab.

Theorem 7.1.7 Let P be a filtered poset with degree function d: P Ñ N, and T be
a maximal tree of H, the Hasse diagram of P . Let DpT q “ #tdpqq | p Ñ q P HzT u.
Then, for every functor F : Pop Ñ Ab:

Hi
pP ; Fq “ 0

for every i ą 2DpT q ` 1.

This technique also produces a local to global bound, describing the vanishing of
the higher limits of a functor F : Pop Ñ Ab in terms of the sub-functors F|Păp for
every p P P .
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Theorem 7.2.1 Let P be a filtered poset, and F : Pop Ñ Ab be a functor. If for
every p P P , HkpPăp; Fq “ 0 for every k ě n, then:

Hk
pP ; Fq “ 0

for every k ą n.

The last vanishing bound presented in this text relates the higher limits of a
functor F : Pop Ñ Ab with the ordinary cohomology with coefficients in abelian
groups of a family of subposet of P .

A frequent method in the literature is filtering a functor by subfunctors such
that their successive quotients take the value zero except on one object; see, for
example, [JMO92b, Proposition 5.6] or [BLO03, Corollary 3.4]. These are called
atomic functors. In the case of posets, given a filtered poset P and an abelian
group A, the atomic functor of A at p0 P P , denoted by ApA, p0q : Pop Ñ Ab, is
the functor defined by:

ApA, p0qppq “

#

A if p “ p0

0 otherwise.

We first show that the higher limits of an atomic functor ApA; p0q are isomor-
phic to the reduced cohomology of the nerve of Pąp0 shifted by 1, i.e,

Hi
pP ;ApA, p0qq – rHi´1

p|Pąp0 |; Aq.

Now, using the technique of filtering a functor F : Pop Ñ Ab into subfunctors

F0
Ă ¨ ¨ ¨ Ă Fn

“ F

such that its successive quotients are isomorphic to a direct sum of atomic functors

Fk
{Fk´1

–
à

dppq“k
ApFppq; pq

we prove the following result.
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Theorem 7.3.4 Let P be a finite filtered poset and F : Pop Ñ Ab be a functor. If
there exists k ą 0 such that, for every p P P , rHnp|Pąp|; Fppqq “ 0, for n ą k; then

Hn
pP ; Fq “ 0 for n ą k.

The last contribution of this thesis is about the higher limits of functors over
dual CL-shellable posets. By the geometric interpretation of this context, we
discuss this problem in terms of sheaves and sheaf cohomology.

Roughly speaking, a bounded, finite and pure poset P is said to be dual
CL-shellable if, for every irreducible chain,

c0 ≺ c1 ≺ c2 ≺ . . . cn´1 ≺ 1̂,

where 1̂ is the maximum of P , there exists a linear order !c in the set of elements
that are covered by c0, P≺c0 , that is compatible with the order induced by the
chain obtained from c by omitting c0 and provides some connectivity properties.
This notion was originally presented by Björner and Wachs [BW82] to show that
Bruhat order of Coxeter groups is a shellable poset.

One of the most relevant properties of shellable posets is that they have the
homotopy type of a wedge of k pdim |P |q-spheres for some k that depends on P .
Therefore, the constant sheaf on R over a CL-shellable poset, R : Pop Ñ ModR,
verifies:

Hi
pPzt0̂, 1̂u; Rq –

$

’

’

’

&

’

’

’

%

Rk if i “ dim |P |,

R if i “ 0, or

0 otherwise.

Motivated by this example, we abstract the essential property of the constant
sheaf. If F : Pop Ñ ModR is a sheaf over a dual CL-shellable poset, one says that
F has the stability property at codegree n, if for every object p P P of codegree n,
and every Q Ă P≺p satisfying some mild compatibility properties, the natural
morphism

Fppq Ñ lim
xQy

F

is an epimorphism.
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Theorem 8.2 Let P be a dual CL-shellable poset of degree d ě 2, n P N such that
1 ď n ď d ´ 1, and F : Pop Ñ ModR be a sheaf. If the pair pP , Fq has the stability
property in codegree n, then

Hn
pPzt1̂u; Fq “ 0.

Examples of sheaves verifying this property are provided by the i-linear forms
sheaves in a hyperplane arrangement. Let V be a finite-dimensional k-vector
space and H be a finite set of hyperplanes of V. The arrangement lattice of H,
denoted by LH, is the intersection lattice generated by the set H with the empty
intersection being V, ordered by inclusion. The lattice structure is given by:

0̂ “
č

hPH
h, 1̂ “ V, dpxq “ dimpxq ´ dimp0̂q,

x ^ y “ x X y, x _ y “
č

tz P LH | x Y y Ă zu.

For every i ě 1, we define the i-linear forms sheaf on LH to be the sheaf
Λip´q˚ : Lop

H Ñ Vectk that sends every W P LH to the i-linear forms of W, i.e., the
i-th exterior product:

Λi HompW, kq “ ΛiW˚,

and W1 ă W to the restriction ΛiW˚ ↠ ΛipW1q˚.

Theorem 8.2.1 Let V be a finite-dimensional vector space, H be a finite set of
hyperplanes of V, and LH the arrangement lattice of H. For every j ă dpLHq ´ i ´ 2,
the j-th cohomology of the i-linear forms sheaf on LHzt1̂u vanishes, that is:

H j
pLHzt1̂u; Λi

p´q
˚
q “ 0.

outline of this thesis- This thesis is divided into two parts. In Part I,
we summarise the results about posets and EI-categories, including some proofs
about hyperplane arrangements, Chapter 1; limits, colimits and Kan extensions,
Chapter 2; model categories, Chapter 3; and Reedy structures, Chapter 4.

In Part II, we expose the results of the thesis, and it is divided into 4 chapters.
In Chapter 5, we describe two model categories for the category of functors that
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are useful to compute higher limits and colimits and essential for the rest of
the thesis. In Chapter 6, we define Mackey functors for posets, and we show
that, in the case of Mackey functors with quasi-unit, their covariant parts are
cofibrant functors. We characterise pseudo-projective functors as cofibrant objects.
In Chapter 7, we introduce some vanishing bounds: the first is provided just
by the combinatorics aspect of the poset; the second one by a local-to-global
method; and the last one by comparing the functor with the higher limits of a
family of atomic functors. Finally, in Chapter 8, mimicking the constant functor,
we abstract a condition that implies that the higher limits of a functor vanish in
non-extreme dimensions. We conclude that chapter by showing that the family
of i-linear forms in an arrangement lattice satisfy the stability property described
in this chapter.
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Chapter 1

P O S E T S A N D E I - C AT E G O R I E S

This chapter summarises the basic results about posets and EI-categories that
we will need in the following chapters. We assume familiarity with the basic
notions of Category Theory, such as categories, functors, natural transformation,
and adjointness. If not, we refer the reader to Mac Lane’s book [ML98] or
Leinster’s book [Lei14].

A partially ordered set (poset for short) is a set P equipped with a binary relation
ď that is:

reflexive: p ď p for all p P P ,

transitive: if p ď q and q ď r, then p ď r, and

antisymmetric: if p ď q and q ď p, then p “ q.

Given a poset P , we can construct a category whose objects are the elements in
P , and there is a single morphism p Ñ q if and only if p ď q. We abuse notation,
and we denote by P either the poset as a set or as a category.

3



4 posets and ei-categories

A natural generalisation of posets are categories in which every endomorphism
is an isomorphism. Following [Lüc89], a category C with this property, that is,

EndCpcq “ AutCpcq for all c P C

is said to be an EI-category. Examples of EI-categories naturally appear in group
theory as shown next.

Example 1.1. Let G be a finite group, the orbit category of G, denoted by OpGq, is
the category whose objects are the homogeneous G-sets G{H, for every H ď G,
and whose morphism sets are G-equivariant maps G{H Ñ G{K. The orbit
category OpGq is an EI-category.

Example 1.2. Let G be a group and H ď G be a subgroup, not necessarily normal.
Let C be the category with two objects 0 and 1, and the hom-set is given by:

Homp0, 0q “ G Homp0, 1q “ ∅
Homp1, 1q “ t1u Homp1, 0q “ G{H.

The composition is given by the product in G and the left action of G on G{H. By
conctruction, C is an EI-category.

Example 1.3. Let p be a prime number and S be a finite p-subgroup. A fusion
system over S is a category F whose objects are the set of all subgroups of S and
the hom-set verifies the following two properties for all P, Q ď S:

1. HomSpP, Qq Ă HomF pP, Qq Ă InjpP, Qq, where HomSpP, Qq is the set of
homomorphisms given by a conjugation in S, and InjpP, Qq are the injective
homomorphisms; and

2. each φ P HomF pP, Qq is the composite of an F -isomorphism followed by
an inclusion.

Every fusion system is an EI-category.

Proposition 1.4. Let C be an EI-category. There exists a poset rCs whose elements are
the isomorphism classes of objects and given rxs, rys P rCs,

rxs ď rys ðñ HomCpx, yq ‰ ∅.

We call rCs the isomorphism poset of C.
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Proof. Reflexive and transitive properties are a consequence of the existence of
the identity and composition, respectively; it remains to check the antisymmetric
one. This property holds because if rxs ď rys and rys ď rxs, then there exists a
pair of morphism f : x Ñ y and g : y Ñ x, then the composites f ˝ g P AutCpyq,
and g ˝ f P AutCpxq are invertible morphism, therefore, rxs “ rys.

Definition 1.5. A filtered EI-category is a pair pC, dq where C is an EI-category
and d: rCs Ñ N is an order-preserving map. This map is called filtration or
degree function.

In this thesis, we primarily focus on functors indexed in posets, although
we work in the more general context of EI-categories in Chapter 5. The main
motivation for this restriction is that it simplifies the computation while still
allowing it to handle interesting problems in homotopy theory and group theory.
Moreover, following Słomińska’s work [Sło01], the computation of higher limits
over an EI-category can be reduced to the computation of higher limits over
posets and groups.

Example 1.6. Some examples of posets.

1. The set of natural numbers N with the standard order relation ď is a poset.

2. The set of positive integers Z` equipped with the divisibility relation, i.e.,
x ď y if y | x is a poset.

3. The set of non-zero integers Zzt0u with the divisibility relation is not a
poset because the relation is not antisymmetric

4. Given a simplicial complex K, its face poset PpKq is the set of simplices of
K ordered by the inclusion. For practical reasons, we include K as the top
element of PpKq; see Figure 4.

Given a simplicial complex, we can construct a poset that collects all its homo-
topical information. Reciprocally, Alexandroff [Ale37] shows that it is possible to
go backwards. The order complex of P , denoted ∆pPq, is the simplicial complex
whose n-faces ∆npPq are the chains of length n ` 1 in P ,

p0 ă p1 ă ¨ ¨ ¨ ă pn.

In addition, we denote by di the i-face map defined by deleting the i-th element
in a chain,

dipp0 ă ¨ ¨ ¨ ă pi ă ¨ ¨ ¨ ă pnq “ p0 ă ¨ ¨ ¨ ă pi´1 ă pi`1 ă ¨ ¨ ¨ ă pn.
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Given a chain c P ∆npPq, we denote by ck the element of P at position k for
0 ď k ď n. Also, given p P P , we denote by ∆ppPq, or by ∆p if the poset P is
understood, the set of all chains c P ∆dppqpPq such that cdppq “ p.

The cover relation in a poset P , denoted by ≺, is defined by p ≺ q if and only if
p ă q and

@r P P , p ď r ď q ñ p “ r or q “ r.

The Hasse diagram of a poset P is a directed graph whose vertices are the
elements of P , and there is a directed edge between x and y P P if and only if
x ≺ y. In this text, we represent the cover relation as an upward edge in the
Hasse diagram.

01

2

0 21

01 1202

H

∆2

Figure 4: The face poset of ∆r2s.

We say that a chain c between two comparable elements p ď q is unrefinable
if given two consecutive elements ci, ci`1 we have ci ≺ ci`1, i.e, the chain can be
written

p ≺ c1 ≺ c2 ≺ ¨ ¨ ¨ ≺ cn´1 ≺ q.

For every p P P , we denote by Pďp the sub-poset of P consisting of those q P P
such that q ď p.

Pďp :“ tq P P | q ď pu.

We can similarly define Pěp, Pąp, Păp and P≺p. If p, q P P , we denote by rp, qs

the subposet of P given by:

rp, qs “ tr P P | p ď r ď qu “ Pěp X Pďq.
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For Q a subset of P , we denote by xQy the sub-poset of P whose elements are
lesser than some element in Q; that is,

xQy :“ tp P P | p ď q for some q P Qu “
ď

qPQ

Pďq.

If P is a linear order, we say that a subset S Ă P is an initial segment if it can be
expressed as S “ xpy “ Pďp for some p P P . Given J, K a pair of subsets of P ,
we write J ď K if, for every j P J, there exits k P K such that j ď k. In the same
way, we define J ă K, J ≺ K, J ą K and J ě K. A subset Q of a poset P is upper
convex if Pěx Ă Q for every x P Q.

We say that a poset P is bounded if it has a maximum 1̂ and a minimum 0̂. For a
bounded poset P we denote by P the subposet Pzt0̂, 1̂u, and for a non-necessarily
bounded poset P , we let P̂ denote the (unique) minimal bounded poset such
that P Ă P̂ . If P is bounded then P̂ “ P . A finite poset is said to be pure if
all maximal chains have the same length. Notice that a pure poset satisfies the
Jordan-Dedekind condition:

All unrefinable chains between two comparable elements
have the same length.

A poset is graded if it is pure and bounded. A graded poset P admits a canon-
ical filtration d : P Ñ N defined by dppq equal to the (common) length of an
unrefinable chain from 0̂ to p. This filtration verifies the following property:

p ≺ q ùñ dpqq “ dppq ` 1.

The length of a filtered poset is the supremum of its filtration:

lengthpPq “ suptdppq | p P Pu.

If P is a graded poset, its length coincides with the value of d at 1̂, this is,
lengthpPq “ dp1̂q.

Example 1.7. Given a simplicial complex K, its face poset PpKq is a graded poset.

A poset P has the descending chain condition if there are no infinite descending
chains, i.e., for every descending chain:

a0 ě a1 ě ¨ ¨ ¨ ě an´1 ě an ě . . . ,
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Figure 5: A filtered but not pure poset.

there exits N P N such that an “ an`1 for every n ě N. For short, if P has the
descending chain condition, we say that P is a DCC poset.

Example 1.8. Notice that a filtered poset is a DCC poset, but the converse is not
true. Let P be a subset of N ˆ N defined by:

P “ tpn, rq P N ˆ N | n “ r “ 0 or n ě r ą 0u

equipped with the order relation

pn, rq ď pn1, r1
q iff

$

&

%

n1 “ r1 “ 0

n “ n1 and r1 ď r.

See Figure 6. An order-preserving map d: P Ñ N implies a bound in the set of
natural numbers. Therefore, P is a DCC poset that is not filtered.

. . .

...

Figure 6: Hasse diagram of the poset described in Example 1.8.

These three conditions verify the following inclusions:

Graded Ă Filtered Ă DCC.
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1.1 shellable posets

Shellable complexes are of interest in several areas of mathematics as algebraic
topology, commutative algebra, and combinatorics. They were popularised by
Björner [Bjö80] to study Stanley-Reisner rings since shellable complexes are
Cohen-Macaulay. Moreover, being shellable implies some important algebraic,
topological, and combinatorial properties for the complex, see [BW82, Bjö84].

A simplicial complex is said to be pure if it is finite and its maximal faces
(facets, for short) have the same dimension.

Definition 1.1.1. A shelling for a pure simplicial complex K is a linear order on its
facets F1 ! F2 ! ¨ ¨ ¨ ! Fn such that the simplicial complex

Fk X

˜

k´1
ď

i“1

Fi

¸

is a non-empty union of facets of BFk, for every k “ 2 . . . , n. A simplicial complex
is said to be shellable if it admits a shelling. A poset P is shellable if its order
complex ∆pPq is a shellable complex.

Figure 7: A non-example of a shellable
complex.

Figure 8: A shellable complex of dimen-
sion 1.

Example 1.1.2 ( [Bjö92] ). Let K be the simplicial complex of vertices ta, b, c, d, eu

and facets

A “ tb, d, eu, B “ tc, e, du, C “ tc, b, eu

D “ ta, c, du, E “ ta, b, cu, D “ ta, c, du,

F “ tc, b, du.

see Figure 9. Then, the ordering A ! B ! C ! D ! E ! F is a shelling for K.
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a

b

c
d

e

Figure 9: A shellable complex [Bjö92, Figure 1].

Example 1.1.3 (Bruhat order). A Coxeter group is a pair pW, Sq where W is a group
and S is a distinguished set of generators of W such that

W “ xS | s2
i “ 1, psisjq

mi,j “ 1 for i ‰ jy

where mi,j “ 2, 3, . . . 8 for i ‰ j. Finite Coxeter groups arise as Weyl groups of
root systems and the symmetry groups of regular polytopes and tessellations.

The elements of W can be expressed as words in S, i.e., for any w P W,

w “ s1s2 . . . sk si P S.

If k is the shortest possible length for such an expression of w, then it is defined
as the length of w, denoted by lpwq “ k. The set of reflections of the Coxeter group
is defined as the set of conjugates of S:

T “ twsw´1
P W | s P S, w P Wu.

The group W admits a partial order, the Bruhat order, given by w ď w1 if there
exists reflections t1, t2, . . . , tm P T such that w1 “ wt1t2 . . . tm and

lpwt1t2 . . . ti´1q ă lpwt1t2 . . . tiq for i “ 1, 2 . . . , m.

Then the order complex of pW, ďq is shellable. We refer the reader to Björner-
Brenti’s Book [BB05], and Björner-Wachs’ paper [BW82] for further details.

Example 1.1.4 ([BM71]). The boundary of a convex polytope is shellable.

The most relevant homotopical property of shellable complexes is that they
have the homotopy type of a wedge of spheres.
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e

ba

ab

aba

ba

bab

abab “ baba

Figure 10: Bruhat order of I2p4q “ xa, b|a2 “ b2 “ e, pabq4 “ ey.

Theorem 1.1.5 ([Bjö84, Theorem 1.3]). Let K be a shellable d-dimensional
complex. Then, there exists h P N such that |K| has the homotopy type of a wedge
of h d-dimensional spheres,

|K| »

h
ł

i“0

Sd.

Deciding if a poset is shellable involves two problems. First, we do not have
an intrinsic notion of a shellable poset; we need to compute the order complex
of the given poset. The second problem is that deciding if a pure d-dimensional
complex is shellable is NP-complete for d ě 3 [GPP`

19]. Despite this problem, in
the 80s, notions that imply the shellability of posets were presented by Björner
[Bjö80] and Björner-Wachs [BW82]. However, Goaoc et al., proved in the same
paper [GPP`

19] that CL-shellability of a poset, one of the notions presented by
Björner-Wachs (see Definition 1.1.7), is also NP-hard for d ě 4.

Let P be a graded poset of length n and EpPq Ă P ˆ P be the set of relations
induced by the covering relation,

EpPq :“ tpx, yq P P ˆ P | x ≺ yu.

An edge labelling of P is map λ : EpPq Ñ Z. Given an edge labelling λ, each
unrefinable chain c “ pc0 ≺ c1 ≺ ¨ ¨ ¨ ≺ ckq can be associated with a k-tuple:

σpcq “ pλpc0, c1q, λpc1, c2q, . . . , λpck´1, ckq.
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We say that c is an λ-increasing chain if the k-tuple σpcq is increasing; this is,

λpc0, c1q ď λpc1, c2q ď ¨ ¨ ¨ ď λpck´1, ckq

This edge labelling allows us to order the maximal chains by the lexicographic
order induced by σ. We denote this order relation by !λ or just ! if the edge
labelling is understood.

Definition 1.1.6. An edge labelling is called an EL-labelling (edge lexicographical)
if for every interval rx, ys in P ,

1. there is a unique increasing maximal chain c in rx, ys, and

2. c ! c1 for all other maximal chains c1 in rx, ys.

A graded poset that admits an EL-labelling is said to be EL-shellable.

3

2

1

Figure 11: EL-labeling of the face lattice of a square [BW83, Figure 2.1].

Björner-Wachs [BW82] presents another notion that implies the shellability of
the poset. For a graded poset P of length n, we define E˚pPq to be the set of
edges of maximal chains of P ,

E˚
pPq :“ tpc, x, yq | x ≺ y, c P ∆npPq, x, y P cu.

A chain-edge labelling of P is a map λ : E˚pPq Ñ Z that satisfies the following
condition: If two maximal chains

c “ p0̂ ≺ c1 ≺ ¨ ¨ ¨ ≺ cn´1 ≺ 1̂q and c1
“ p0̂ ≺ c1

1 ≺ ¨ ¨ ¨ ≺ c1
n´1 ≺ 1̂q
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coincide along their first d edges, then their labels also coincide along these edges,
i.e., if ci “ c1

i for i “ 0, . . . , d, then:

λpc, ci´1, ciq “ λpc, c1
i´1, c1

iq

Let λ be a chain-edge labelling of P . Each maximal chain

c “ p0̂ ≺ c1 ≺ ¨ ¨ ¨ ≺ cn´1 ≺ 1̂q

of P can be associated with a unique n-tuple:

σpcq “ pλpc, 0̂, c1q, λpc, c1, c2q, . . . , λpc, cn´1, 1̂qq.

Given x ď y P P and r a unrefinable chain from 0̂ to x, we say that the pair
prx, ys, rq is a rooted interval with root r and we denote it rx, ysr. If c is any maximal
chain of rx, ys, then r Y c is a maximal chain of r0̂, ys. For a maximal chain c in a
rooted interval rx, ysr has a unique k-tuple

σrpcq “ pλpc1, x, c1q, λpc1, c1, c2q, . . . , λpc1, ck´1, yqq

where c1 is any maximal chain from 0̂ to 1̂ that contains r Y c. We say that a maxi-
mal chain c in a rooted interval rx, ysr is increasing if the k-tuple σrpcq is increasing.
If c1 and c2 are maximal chains of rx, ysr then c1 is said to lexicographically precede
c2 in rx, ysr if σrpc1q lexicographically precedes σrpc2q, and we denote it by c1 ! c2

in rx, ysr.

Definition 1.1.7. A chain-edge labelling λ is called a CL-labelling if for every
rooted interval rx, ysr in P ,

1. there is a unique increasing maximal chain c in rx, ysr, and

2. c ! c1 for all other maximal chains c1 in rx, ysr.

A graded poset is said to be CL-shellable if it admits a CL-labelling. A graded
poset P is said to be dual CL-shellable if Pop, the poset obtained from P by the
reverse order is CL-shellable.

The relations between these notions can be summarised in the following
diagram:

EL-shellable ñ CL-shellable ñ shellable.



14 posets and ei-categories

3

2

1

1

2

2

3

3

1

2

3

1

Figure 12: A CL-labeling [BW83, Figure 2.2].

These inclusions are strict since there are examples of CL-shellable posets that
are not EL-shellable [Li19] and results that imply the existence of shellable posets
that are not CL-shellable [Wal85]. However, being CL-shellable and shellable are
close conditions.

Theorem 1.1.8 (Björner-Wachs [BW83, Teorem 4.3]). Let K be a pure polyhedral
complex. The face poset PpKq is dual CL-shellable if and only if K is a shellable
complex.

Later, Björner-Wachs characterise CL-shellable posets in terms of their atoms
[BW83]. However, since we are interested in the opposite category of a CL-
shellable poset, we present here a characterisation of dual CL-shellable posets.
An atom a of a graded poset P is an element that covers the minimum 0̂ ≺ a.
Dually, a coatom h is an element covered by the maximum h ≺ 1̂.

Let P be a graded poset, p P P and ! be a linear order in P≺p. Given h ≺ p,
we denote by C!phq to be the elements of P≺h that are covered by some h1 ! h,
this is,

C!phq :“ tx ≺ h | x ≺ h1 for some h1
! hu.

Definition 1.1.9. Let P be a graded poset. A recursive coatom ordering for P is, for
every unrefinable chain c that ends in 1̂, a linear order !c on the set of coatoms
of Pďc0 , such that:

cl1 if c0 ‰ 1̂, the set C!d0pcq
pc0q is an initial segment of the linear ordered set

pP≺c0 , !cq, i.e., if x P C!d0pcq
pc0q, and y P P≺c0zC!d0pcq

pc0q, then x !c y; and

cl2 for every pair of coatoms h !c h1 P P≺c0 , if there exists y P Pďc0 such that
y ď h, h1, then there is a coatom h2 ! h1 of Pďc0 and an element z P Pďc0

such that y ď z ≺ h2, h1.



1.1 shellable posets 15

By abuse of notation, we say that ! is a recursive coatom ordering if the family
tpP≺c0 , !cquc is a recursive coatom ordering where c ranges over the family of all
unrefinable chains that end in 1̂. Moreover, if the chain c is just the trivial chain,
we denote !, the linear order !c.

Originally, Björner-Wachs introduced the property of admitting a recursive coatom
ordering instead of defining what a recursive coatom ordering is. However, since
we introduce techniques that use the recursive coatom ordering explicitly, we
prefer to define it properly.

Remark 1.1.10. Let ! be a recursive coatom ordering, c be an unrefinable chain
that ends in 1̂ and h ≺ c0. we denote by Ccphq the set C!cphq. If the chain c is
understood, we denote it by Cphq.

Figure 13: An example of a CL-shellable
poset; see [BW83, Figure 3.1].

Figure 14: An example of a non CL-
shellable poset; see [BW83, Fig-
ure 3.1].

Proposition 1.1.11 ([BW82]). A graded poset P is dual CL-shellable if and only if there
exists a recursive coatom ordering for P .

In general, given a dual CL-shellable poset P with recursive coatom ordering
!, and two chains c, c1 both ending in 1̂ and with the same source, the linear
orders !c and !c1 may not coincide. Li [Li20] characterise EL-shellable poset as
the ones for which these orders coincide.

Proposition 1.1.12 ([Li20, Proposition 2.1.1]). Let P be a dual CL-shellable poset.
Then P is dual EL-shellable if and only if there exists a recursive coatom ordering !

such that for every p P P , the linear ordering pP≺p, !cq is independent of the chain
c “ p ≺ ¨ ¨ ¨ ≺ 1̂.
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Next, we introduce some properties of CL-shellable poset that we will need
later.

Lemma 1.1.13. Let P be a dual CL-shellable poset with recursive coatom ordering !,
and Q be the subposet of P consisting of the objects of degree dpPq ´ 1 and dpPq ´ 2.
Let x1 ! x0 be a pair of coatoms of P such that there exists p P Păx1 X Păx0 . Then,
there exists a sequence of coatoms tznunPN such that:

1. the sequence is connected in Q X Pěp,

2. it starts in x0, this is, z0 “ x0, and

3. there exists N P N, such that zn “ zn´1 ! x1 for all n ą N.

Proof. We define this sequence recursively. First, we set z0 :“ x0 and given tzku
n´1
k“0

verifying (1) and (2), we define zn as follows:
If zn´1!x1, then we define zn :“ zn´1. Otherwise, by the induction hypothesis,

p ă x1, zn´1. Therefore, By CL2 (see Definition 1.1.9), there exists at least a
coatom y and qn´1 P Q such that p ď qn´1 ≺ y, zn´1 with y ! zn´1. We define
zn to be any element y with this property. By construction, zn is connected in
Q X Pěp with zn´1 by qn´1. By the induction hypothesis, there exists a zigzag
that connects zn with z0 in Q X Pěp. So, we can extend this zigzag, obtaining a
connected sequence tzkun

k“0:

z0 z1 . . . zn´1 zn

q0 . . . qn´2 qn´1

Finally, since the set of coatoms between x1 and x0 is finite, there exists N P N

such that zn!x1 for all n ą N.

Lemma 1.1.14. Let P be a dual CL-shellable poset, and Q be the subposet of P consisting
of the objects of degree dpPq ´ 1 or dpPq ´ 2. Then, Q is final in Pzt1̂u and in P .

Proof. If dpPq “ 0 the condition is empty and for dpPq “ 1, 2 we have Q “ Pzt1̂u.
Then, we assume that dpPq ą 2. We will only prove that Q is final in P ; the other
case is analogous.

Let ! be a recursive coatom ordering for P . First, notice that for every p P P ,
the comma category pp{Qq, see Definition 2.3.2, is non-empty. This holds since
p ď h for at least a coatom h, and by definition, Q contains every coatom of P .
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Next, we check that p{Q is connected. Let x0, x1 P Q such that p ă x0, x1. We
can assume without loss of generality that x1, x0 are coatoms and x1 ! x0. Now,
we construct a connected sequence txnu of coatoms that connects x1 with x0.

Given xn´1 and xn´2 we construct xn as follows: If xn´1 “ xn´2, then we define
xn “ xn´1. Otherwise, we apply Lemma 1.1.13 to xn´1 and xn´2 obtaining a
sequence of coatoms tznu such that is connected in Q X Pěp, it starts in xn´2, and
a natural number N P N such that zm “ zm´1 ! xn´1 for all m ą N. Then we
define xn :“ zm for any m ą N. By finiteness of the coatoms set, this sequence
eventually ends; this is, for some n0 P N, xm “ xm`1 for all m ą n0.

xiz1z2z3xi`1
. . .

xi`2

Figure 15

By construction of the sequence, the odd elements x2n`1 are connected with
x1, and the even ones are connected with x0 (see Figure 15), and as we said
before, there is some n such that xn “ xn`1, that means that both subsequences
are connected.

Definition 1.1.15. Let P be a dual CL-shellable poset with recursive coatom
ordering !, and c be an unrefinable chain that ends in 1̂. Given Q a subset of
coatoms of Pďc0 , we say that c makes Q compatible with the recursive coatom ordering
! if Q is an initial segment of the linear ordered set pP≺c0 , !cq. A subset of
coatoms Q Ă P≺c0 is said to be compatible with the recursive coatom ordering ! if
there exists a chain c “ pc0 ≺ c1 ≺ ¨ ¨ ¨ ≺ 1̂q that makes Q compatible with !.

Lemma 1.1.16. Let P be a dual CL-shellable poset with recursive coatom ordering !,
p be an object of P and Q be a subset of coatoms of Pďp compatible with the recursive
coatom ordering. Then, xQy Y tpu is a dual CL-shellable poset of length dppq.

Proof. Let c be an unrefinable chain from p to 1̂ that makes Q compatible with !.
Then, the family tpxQy≺c1

0
, !1

c1quc1 is a recursive coatom ordering, where c1 ranges
in the family of all unrefinable chains c1 in xQy that ends in p and pxQy≺c1

0
, !1

c1q is
the linear ordered set pP≺c1

0
, !c1≺d0pcqq.
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1.1.1 Intersection lattice of a hyperplane arrangement

A lattice is a poset such that any two elements x and y have a maximum, x _ y,
and a minimum, x ^ y. A geometric lattice is a graded lattice such that the degree
function verifies:

dpx ^ yq ` dpx _ yq ď dpxq ` dpyq. (2)

If P is a geometric lattice and p P P , then Pďp is again a geometric lattice because
if x, y P Pďp, then x _ y ď p, so Equation (2) holds in Pďp. Every linear ordering
on the atoms of a geometric lattice induces a recursive atom ordering [BW83,
Theorem 5.1]. Therefore, every geometric lattice is CL-shellable. For practical
reasons, we consider the reverse order relation in the geometric lattices to obtain
dual CL-shellable lattices. An example of a geometric lattice is the intersection
lattice of a hyperplane arrangement.

Let V be a finite-dimensional vector space over a field k, let H “ th1, . . . , hnu

be a finite set of linear hyperplanes in V. The arrangement lattice LH has elements
all possible intersections of hyperplanes in H and is ordered by the inclusion
relation. The graded lattice structure is given by:

0̂ “
č

hPH
h, 1̂ “ V, dpxq “ dimpxq ´ dimp0̂q,

x ^ y “ x X y, x _ y “
č

tz P LH | x Y y Ă zu.

Remark 1.1.17. Generally, 0̂ is not the trivial vector space, 0̂ ‰ 0.

With this lattice structure, LH is a dual CL-shellable lattice. In a geometric
lattice L, a collection of coatoms S is said to be independent if for every T Ĺ S, we
have

ľ

S ă
ľ

T;

otherwise, we say that S is dependent. A basis of coatoms is a maximal independent
subset.

Example 1.1.18. Consider in R3 the following hyperplanes h1 ” 0 “ y ´ z,
h2 ” 0 “ z, h3 ” 0 “ y ` z and h4 ” 0 “ x, and let L “ LH the arrange-
ment lattice of H “ th1, h2, h3, h4u. The set th1, h2, h3u is dependent in L since
h1 X h2 “ h1 X h2 X h3, and th1, h2, h4u is a basis, see Figure 16.

Lemma 1.1.19. Let V be a finite-dimensional k-vector space and H be a finite set of
hyperplanes. A subset th1, h2, . . . , hnu of coatoms of LH is independent if and only if the
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Figure 16

vectors f1, f2, . . . , fn are independent in V˚, where fi is a generator of the annihilator of
hi, this is, anphiq “ tg P V˚ | gpvq “ 0 for all v P hiu.

Proof. We prove one implication; the other one is analogous. Assume by con-
tradiction that th1, h2, . . . , hnu is an independent set of coatoms and there exists
λ1, λ2, . . . , λn P k with some λi ‰ 0 such that λ1 f1 ` λ2 f2 ` ¨ ¨ ¨ ` λn fn “ 0. Without
loss of generality, assume that λ1 “ 1. Then, we have f1 “ ´pλ2 f2 ` ¨ ¨ ¨ ` λn fnq.
In particular,

ker f1 “ ker ´pλ2 f2 ` ¨ ¨ ¨ ` λn fnq Ą

n
č

i“2

ker fi.

This implies that

n
ľ

i“1

hi “ h1 ^

˜

n
ľ

i“2

hn

¸

“ ker f1 X

˜

n
č

i“2

ker fi

¸

“

n
č

i“2

ker fi “

n
ľ

i“2

hi,

which contradicts that th1, . . . , hnu is an independent set of coatoms.

Corollary 1.1.20. Let V be a finite-dimensional vector space and H be a finite set of
hyperplanes. If B Ă H is an independent set of coatoms of LH, then #B ď dpVq.
Moreover, #B “ dpVq if and only if B is a basis.

Proof. This follows directly from Lemma 1.1.19

Lemma 1.1.21. Let V be a finite-dimensional vector space, H be a finite set of hyperplanes,
and L be the arrangement lattice of H. Let B be a basis of L and h0 P HzB. Then, there
exists a subset B0 of B such that,

1. B0 Y th0u is a basis of L; and
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2. the set B1 “ th X h0 | h P B0u is a basis of the geometric lattice Lďh0 .

Proof. By Lemma 1.1.19, (1) is reduced to the well-known Steinitz’s Lemma about
finding a base of a vector space in a set of generators.

Notice that (2) is equivalent to

(2’) B1 is an independent set and #B1 “ #B0.

To prove statement (2’), we follow the next linear algebra argument. Let h1, . . . , hn

be the elements in B0, and, for every i “ 0, 1, . . . , n, let fi be a generator of
anphiq. Since B0 is an independent set of coatoms, we can assume without loss of
generality that t f0, f1, . . . , fnu is a basis of V˚. If not, consider the quotient V˚{0̂.

First, notice that ph0q˚ can be identified with the quotient V˚{x f0y, and a basis
of this quotient is provided by the set t f1 ` x f0y, f2 ` x f0y, . . . fn ` x f0yu. Next, by
direct computation, we have anph0 X hiq “ x f0 ` fiy. By Lemma 1.1.19 under the
identification ph0q˚ – V˚{x f0y, the set th0 X hi | hi P B0u is an independent set and
it has exactly |B0| elements.

Lemma 1.1.22. Let V be a finite-dimensional vector space, and let H be a finite set of
hyperplanes. For every W P LH, the meet of the hyperplanes of W is the minimum of LH,
i.e.,

ľ

ω≺W

ω “ 0̂.

Proof. LH is an arrangement lattice, and hence we can write W as a finite intersec-
tion of hyperplanes in H “ th1, h2, . . . , hmu. We assume without loss of generality
that W “

Źk
i“1 hi. Note that for every j “ k ` 1 . . . m, W ^ hj ď W. Then,

m
ľ

i“k`1

pW ^ hiq “ W ^ p

m
ľ

i“k`1

hiq “ p

k
ľ

i“1

hiq ^ p

m
ľ

i“k`1

hiq “

m
ľ

i“1

hi “ 0̂

Definition 1.1.23. Let L be a geometric lattice. A basis-like recursive coatom ordering
for L is a recursive coatom ordering ! for L such that:

cl3 For every unrefinable chain c that ends in 1̂, an initial segment of pP≺c0 , !cq

is a basis of the geometric lattice Pďc0 , this is, there exists h P P≺c0 such that
the set th1 P P≺c0 | h1!chu is a basis of Pďc0 .

Lemma 1.1.24. Let V be a finite-dimensional vector space and H be a finite set of
hyperplanes of V. Then, LH admits a basis-like recursive coatom ordering.
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Proof. For short, let L be the arrangement lattice of H. First, CL2, see Defini-
tion 1.1.9, in an arrangement lattice is trivial. For every c0 P L, every h, h1 ≺ c0

with the property that there exists y ď h, h1, we have: y ď h ^ h1 ≺ h, h1.

So, we define for every unrefinable chain c that ends in 1̂, a linear ordered set
pL≺c0 , !cq that verifies CL1 and CL3. We proceed by induction on the length of c.
For c “ p1̂q, the trivial chain, we set on the coatoms of L any linear order with the
property that an initial segment is a basis. This is, we choose a basis B of L, and
we define !c to be any linear order for L≺c0 with the property:

x P B and y P L≺c0zB, then x !c y.

Now, assume that !c is defined for every unrefinable chain of length less than
n, and it verifies CL1 and CL3. Let c be an unrefinable chain of length n. To
shorten the notation, we rename h “ c0 and c1 :“ d0pcq.

We have two options either
Ź

Cc1phq “ 0̂ or
Ź

Cc1phq ą 0̂. In the first case, there
exists a basis B of Lďh whose elements belong to Cc1phq. Then, we define !c to be
any order such that both B and Cc1phq are initial segments of pL≺h, !cq, i.e.,

‚ for every x P B and every y P Cc1phqzB, x ď y; and

‚ for every x P Cc1phq and every y P P≺hzCc1phq, x ď y.

Otherwise, we first show that Cc1phq is an independent set of coatoms. Let T
be a proper subset of Cc1phq. By definition of Cc1phq, every ω P Ccphq can be
expressed as ω “ h ^ h1 for some h1 !c1 h. Let S “ th1 P P≺c1 | h1!c1 hu and
T1 “ th1 P S | h1 ^ h P Tu Y thu. Therefore we have:

ľ

T “
č

phXh1qPT

ph X h1
q “

¨

˝

č

phXh1qPT

h1

˛

‚X h “
č

h1PT1

h1
“
ľ

T1.

ľ

Cc1phq “
č

phXh1qPCc1phq

ph X h1
q “

¨

˝

č

phXh1qPCc1 phq

h1

˛

‚X h “
č

h1PS

h1
“
ľ

S.

Finally, by the induction hypothesis, an initial segment of
`

L≺c1 , !c1

˘

is a basis,
and S is an initial segment with

Ź

S ą 0. So, S is independent, and T1 Ĺ S, then
we conclude:

ľ

T “
ľ

T1
ă
ľ

S “
ľ

Ccphq.
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Therefore, Cc1phq is independent. In this case,
Ź

Cc1phq ą 0̂, we extend Cc1phq to
a basis B of Lďh. We define !c to be any order that both B and Cc1phq are initial
segments, this is:

‚ for every x P Cc1phq and every y P BzCc1phq, x ď y; and

‚ for every x P B and every y P P≺hzB, x ď y.

Therefore, ! is a basis-like recursive coatom ordering.
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To motivate the notion of categorical limit, we present an intentionally non-
rigorous example that covers the intuition of this concept. In Calculus, the limit
of a sequence txnu seems to be the last element of this sequence. For example, if
we consider the sequence t1{nunPZ` , our intuition tells us that the last element of
this sequence should be 0. In some sense, if we consider Z` and R as a category
induced by the standard order, this sequence defines a (contravariant) functor,
x : pZ`qop Ñ R, that we can represent as the following diagram:

¨ ¨ ¨ Ñ 1{n Ñ ¨ ¨ ¨ Ñ 1{4 Ñ 1{3 Ñ 1{2 Ñ 1

This way, 0 is the "closer" element from the left to this sequence; this is, for every
r P R such that r ă 1{n for all n P Z`, we have that r ď 0 ă 1{n, with more
technical words, 0 is the terminal object with this property. This is the concept of
categorical limits.

In this chapter, we recall the definition of limit from a theoretical point of
view, and we give some examples of limits and computation tools for functors
taking values in ModR. Later, we dualise these concepts to introduce the notion

25
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of colimit. Finally, we define the concept of a Kan extension and how limits and
colimits help to compute them.

2.1 limit

Let C be a small category, M be a category non-necessarily small, and M P M.
We denote by M the constant functor on C, this is, the functor M : C Ñ M, that
Mpcq “ M, for all c P C; and Mpc Ñ c1q “ IdM, for all pc Ñ c1q P C.

Definition 2.1.1. Let M be a category, C be a small category and F : C Ñ M be a
functor. A cone over F with vertex M P M is a natural transformation η : M Ñ F.
That is, a cone over F is an object M P M, the vertex, together with a family of
morphism in M, tηi : M Ñ FpiquiPC , such that for every map u : i Ñ j in C, the
triangle

Fpiq

M

Fpjq

Fpuq

ηi

ηj

commutes. A limit for F, if it exists, is the terminal object in the category of cones
over F.

Theorem 2.1.2. Let M be a category, C be an small category, and F : C Ñ M be
a functor. A limit for F, if it exists, is unique.

Proof. This holds directly by the universal property of terminal objects.

We denote the vertex of the limit for a functor F : C Ñ M by limC F or just
lim F if the index category is understood. It is common to use the term the limit
of F to refer to lim F itself rather than to the vertex of the limit.

Definition 2.1.3. Let M be a category. We say that M is complete or that M has
all small limits if, for every small category C and every functor F : C Ñ M, the
limit of F exists.

Example 2.1.4. The categories of sets Set, topological spaces Top, and R-modules
ModR are complete.
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Definition 2.1.5. Let M be a category and I be a discrete category. The limit of a
functor X : I Ñ M, if it exists, is called the product of the family tXiuiPI , and it is
denoted by:

ź

iPI
Xi :“ lim

I
X.

Example 2.1.6. In some categories, products do not always exist. For example,
in the case where M is a discrete category, there does not exist any non-trivial
product in M.

Example 2.1.7. In the categories of sets, topological spaces, and R-modules, the set-
theoretical product is a categorical product. More precisely, for any small discrete
category I and a functor F : I Ñ Set, I Ñ Top, or I Ñ ModR, the set-theoretical
product

ś

iPI Fpiq together with the projection maps πj :
ś

iPI Fpiq Ñ Fpjq form a
categorical product. The projections are part of their respective categories. The
product topology is used to define the product of topological spaces, while the
algebraic structure is given component-wise for R-modules. In both cases, the
projections belong to their respective categories.

Example 2.1.8. Let P be a poset, and x, y P P . The product of x and y, if it exists,
is the greatest lower bound or meet. We say that P is a meet-semilattice if products
always exit in P .

Definition 2.1.9. Let M be a category, P be the poset with three objects b ď a ě c,
and X : P Ñ M be a functor. The limit of X, if it exists, is called the pullback of
the diagram:

Xc

Xb Xa,

and it is denoted by:
Xc ˆXa Xb :“ lim

P
X.

We finish this section by showing some computation techniques.

Example 2.1.10. Let R be a commutative ring with identity, and let C be a small
category. Given a functor F : C Ñ ModR, we form the product

ś

dPC Fpdq, which
is the set of tuples pxcq, where each xc P Fpcq. For an object c P C, we have a
projection map πc :

ś

dPC Fpdq Ñ Fpcq, defined by πcppxdqq “ xc. However, the
collection of projection maps tπcucPC does not form a cone unless C is a discrete
category.
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To construct a cone over F, we define a sub-module L ď
ś

dPC Fpdq consisting
of tuples pxcq that are compatible in the sense that for every morphism c Ñ c1 in
C, the morphism Fpc Ñ c1q sends xc to xc1 , i.e.,

L :“

#

pxdq P
ź

dPC
Fpdq | for every c Ñ c1

P C, Fpc Ñ c1
qpxcq “ xc1

+

.

The vertex L together with the projections tπc : L Ñ Fpcqu form a cone over F, so
it only remains to show that it is the terminal cone.

Let υ : M Ñ F be a cone with vertex M. Then, there exists a unique R-linear
map ϕ : M Ñ

ś

dPC Fpdq such that υc “ πc ˝ ϕ for every object c P C.

M
ś

dPC Fpdq

Fpcq.

ϕ

υc
πc

Since υ is a natural transformation, it follows that ϕ preserves the compatibility
of tuples. Hence, ϕpMq ď L, and we have a factorisation M Ñ ϕpMq Ñ

ś

dPC Fpdq

of the cone υ. Therefore, L is the limit of F.

Example 2.1.11. Let R be a commutative ring with identity, and let C be a small
category. Consider a functor F : C Ñ ChpRq, where ChpRq is the category of
unbounded cochain complexes of R-modules.

The limit of F can be computed degree-wise. That is, the limit of F can be
written as follows:

lim F : . . . lim Fi´1 lim Fi lim Fi`1 . . .

where lim Fi is the limit of the functor Fi : C Ñ ModR.

Moreover, the differentials lim Fi´1 Ñ lim Fi are obtained by factoring the cone
induced by the composite of the projection followed by the differential through
lim Fi,

lim Fi Fipcq

lim Fi´1 Fi´1pcq.
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Definition 2.1.12. Let C be an small category, and F : C Ñ ModR be a functor.
The support of F, denoted by supppFq, is the full subcategory of C spanned by
the objects c P C such that Fpcq ‰ 0, i.e.,

supppFq “ tc P C | Fpcq ‰ 0u.

Proposition 2.1.13. Let P be a poset, and F : Pop Ñ ModR be a functor. Let B be a
subposet of P containing the support of F. If B is upper convex, then

lim
B

F – lim
P

F.

Proof. We prove this isomorphism directly by the definition of limit as a universal
object. Let η : limB F Ñ F|B be the limiting cone of F|B. Because the support of F
is contained in B, the limit limB F is the vertex of a cone ϑ : limB F Ñ F over F,
defined as follows:

For p P P , we have

ϑppxq :“

$

&

%

ηppxq if p P B

0 otherwise.

Moreover, the restriction morphism induces a morphism r : limP F Ñ limB F
such that the following diagram commutes:

limP F

limB F F.

r

Thus, by the universal property of limit, we conclude that r is an isomorphism.

2.2 colimit

Definition 2.2.1. Let M be a category, C be a small category and F : C Ñ M
be a functor. A cocone over F with vertex M P M is a natural transformation
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η : F Ñ M, i.e., an object M P M, the vertex, together with a family of morphism
in M, tηi : Fpiq Ñ MuiPC , such that for every map u : i Ñ j in C, the triangle

Fpiq

M

Fpjq

Fpuq

ηi

η j

commutes. A colimit for F, if it exists, is the initial object in the category of
cocones over F.

Theorem 2.2.2. Let M be category, C be an small category, and F : C Ñ M be a
functor. A colimit for F, if it exists, is unique.

Proof. This holds by the universal property of initial objects.

If it exists, we denote the colimit of F : C Ñ M by colimC F or just colim F if
the index category is understood.

Definition 2.2.3. Let M be a category. We say that M is cocomplete or M has
all small colimits if, for every small category C and every functor F : C Ñ M,
the colimit of F exists. We say that M is bicomplete if M is both complete and
cocomplete.

Example 2.2.4. The categories of R-modules, sets, and topological spaces are
bicompletes.

Definition 2.2.5. Let M be a category and I be a discrete category. The colimit
of a functor X : I Ñ M, if it exists, is called the coproduct of the family tXiuiPI ,
and it is denoted by:

ğ

iPI
Xi :“ colim

I
X.

Example 2.2.6. The coproduct in the category of R-modules is the direct sum,
where the algebraic structure is performed component-wise. However, in the
categories of topological spaces and sets, the coproduct is the disjoint union. For
topological spaces, the disjoint union is equipped with the weak topology.

Example 2.2.7. Let P be a poset, and x, y P P . The coproduct of x and y, if it exists,
is the least upper bound or join. We say that P is a join-semilattice if coproducts
always exit in P .
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Definition 2.2.8. Let M be a category, P be the poset with three objects b ě a ď c,
and X : P Ñ M be a functor. The colimit of X, if it exists, is called the pushout of
the diagram:

Xa Xc

Xb,

and it is denoted by
Xc \Xa Xb :“ colim

P
X.

Example 2.2.9. Let R be a commutative ring with identity, C be a small category,
and F : C Ñ ModR be a functor.

We form the coproduct
À

dPC Fpdq, which is, as we said before, the direct
sum of the R-modules. Given an object c P C, we have an inclusion map
ιc : Fpcq Ñ

À

dPC Fpdq, defined by

pιcpxqqd “

$

&

%

x if c “ d

0 otherwise.

Analogous to the limit case, the collection of inclusion maps tιcucPC does not form
a cocone unless C is a discrete category. Now, to construct a cocone over F, we
define a quotient R-module

C “

˜

à

dPC
Fpdq

¸

{R

where R is the submodule generated by elements of the form xc ´ Fpc Ñ c1qpxcq,
for all morphisms c Ñ c1 in C and all xc P Fpcq. Then, we have a canonical
projection map ρc : Fpcq Ñ C, defined by ρcpxq “ rιcpxqs, where r´s denotes the
equivalence class in C. The collection of projection maps tρcucPC form a cocone
over F.

Moreover, if υ : F Ñ M is another cocone with vertex M, then there exists a
unique R-linear map ϕ : ‘dPC Fpdq Ñ M such that υc “ ϕ ˝ ιc for every object
c P C,

Fpcq

À

dPC Fpdq M.

ιc
υc

ϕ
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Since υ is a natural transformation, it follows that ϕ preserves the equivalence
classes. This implies that ϕ factorizes through C, and hence, C is the colimit of F.

Example 2.2.10. In a similar way to the situation with limits, we can compute
colimits in the category of cochain complexes degree-wise; this is, the colimit
of a functor F : C Ñ ChpRq is given degree-wise by the colimit of the functors
Fi : C Ñ ModR. Furthermore, the differentials in the colimit are induced by the
differentials in each object c P C of the cochain complex Fpcq.

2.3 kan extension

Kan extensions are a way to extend functors through another one. Let D be a
category, C be a subcategory of D and i : C ãÑ D be the inclusion functor. Given a
functor F : C Ñ M, a Kan extension, if it exists, is an extension of F in D

C M

D.

i

F

F̃

That is, a Kan extension should be a kind of inverse for the restriction functor:

i˚ : FunpD,Mq Ñ FunpC,Mq.

Definition 2.3.1. Let p : C Ñ D be a functor, and M be a category. The left Kan
extension along p, if it exists, is a left adjoint of the functor

p˚ : FunpD,Mq ÝÑ FunpC,Mq.

It is typically denoted by p! or Lanp. Dually, the right Kan extension along p, if it
exists, is a right adjoint of p˚, denoted by p˚ or Ranp.

Right and left Kan extensions can be characterised in terms of limits and
colimits, and comma categories.

Definition 2.3.2. Let E ,D and C be categories and T : E Ñ C and S : D Ñ E be a
pair of functors. The comma category pT{Sq is a category whose objects are triples
pe, d, f q, where e P E , d P D and f : Tpeq Ñ Spdq, and whose morphisms are pairs
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of morphisms ph, kq from pe, d, f q to pe1, d1, f 1q such that h : e Ñ e1 is a morphism
in E , k : d Ñ d1 is a morphism in D and the following square commutes

Tpeq Tpe1q

Spdq Spd1q.

f

Tphq

g

Tpkq

If T or S is the constant functor c P C, we use the notation pc{Sq or pT{cq,
respectively.

Proposition 2.3.3 ( [ML98, Theorem X.3.1] ). Let D be a small category, and M be a
bicomplete category. Then:

1. the right Kan extension of a functor F : D Ñ M along a functor p : C Ñ D exists
and given c P C:

pRanp Fqpcq “ lim
´

pc{pq Ñ D F
Ñ M

¯

;

2. the left Kan extension of F along p exists and given c P C:

pLanp Fqpcq “ colim
´

pp{cq Ñ D F
Ñ M

¯

.

In both cases, given g : c Ñ c1, the value of the Kan extension for g is given by the
induced map between the (co)limits.
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Quillen presents in his seminal work [Qui67] the notion of model category, or
«a category of models for a homotopy theory», as a category M, endowed with
three distinguished families of morphisms called weak equivalences, cofibrations
and fibrations satisfying certain axioms, the most important being the following
two: the first one is the lifting axiom, given a commutative square:

A X

B Y

f

i p

g

where i is a cofibration, p is a fibration, and either i or p is also a weak equivalence,
there exists a morphism h : B Ñ X such that h ˝ i “ f and p ˝ h “ g. The next
axiom is about factorisation, every map f can be factored both, as f “ p ˝ i
and as f “ p1 ˝ i1 where p, p1 are fibrations, i, i1 are cofibrations and p, i1 are also
weak equivalences.

This notion sets a very general framework to do homotopy theory without
having topological spaces involved. The main references of this section are
Dwyer-Spalinski’s survey [DS95], Hirschhorn’s book [Hir03], Hovey’s [Hov99],
Balchin’s [Bal21] and Riehl’s [Rie14].
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3.1 definition and examples

As we say in the motivation, one of the main objectives for defining model
categories is about lifting. Given i : A Ñ B and p : X Ñ Y two morphism in a
category C, a lifting problem between i and p is a commutative diagram:

A X

B Y.

f

i p

g

(3)

A solution of the lifting problem or just a lift, is a morphism h : B Ñ X such that
the resulting diagram with five arrows commutes, this is, h ˝ i “ f and p ˝ h “ g.
A morphism i : A Ñ B is said to have the left lifting property (LLP for short) with
respect p : X Ñ Y and p is said to have the right lifting property (RLP for short)
with respect to i if every lifting problem between i and p has a solution.

Definition 3.1.1. A model category structure on a bicomplete category M is a triple
of classes of morphisms pWeakM, FibM, CofMq:

„
Ñ WeakM, the weak equivalences;

ãÑ FibM, the fibrations; and

↠ CofM, the cofibrations.

These distinguished classes must satisfy the following axioms:

closed Each of these classes is closed under composition and contains every
identity morphism.

lifting Every lifting problem between i and p, see Diagram (3), has (as least) a
solution if i is a cofibration and p is a fibration and either i or p is a weak
equivalence.

factorisation Each morphism f in M can be factored in two ways: as a
cofibration followed by a fibration that is a weak equivalence and as a
cofibration that is a weak equivalence followed by a fibration

A

X Y.

B

f
„

„
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2-out-3 Given two composable morphism f and g, if two of f , g and g ˝ f are
weak equivalences, then so is the third.

retracts The three classes are closed under retracts; this is, if f , g are mor-
phisms in M such that

A X A

B Y B.

i

g

IdA

f

r

g

IdB

i1 r1

If f is a weak equivalence (resp. fibration, cofibration), then g is a weak
equivalence (resp. fibration, cofibration).

We say that a morphism that is both a fibration and a weak equivalence is an
acyclic fibration. Similarly, a morphism that is a cofibration and a weak equivalence
is an acylic cofibration.

By abuse of notation and only if there is no confusion, we say that M is a
model category instead of M is a category equipped with the three distinguished
classes of morphisms. Sometimes, if in a category we work with many model
category structures, we name it by the sub-index.

Definition 3.1.2. Let M be a model category. An object X P M is said to be:

1. fibrant if the unique morphism X Ñ ˚ is a fibration; and

2. cofibrant if the unique morphism ∅ Ñ X is a cofibration.

Now, we present some classical examples of model category structures.

Example 3.1.3 (Strøm). The category of topological spaces Top can be equipped
with a model category structure defining a continuous map f : X Ñ Y to be:

„
Ñ a weak equivalence if it is a homotopy equivalence;

ãÑ a cofibration if it is a closed Hurewicz cofibration; and

↠ a fibration if it is a Hurewicz fibration.
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This model category structure is named the Strøm model category on Top, for
more details we refer the reader to Strøm’s original papers [Str72]

Example 3.1.4. There is a more useful model category structure for the category
of topological spaces Top, the classical model category structure, in which a
continuous map f : X Ñ Y is defined to be:

„
Ñ a weak equivalence if it is a weak homotopy equivalence;

ãÑ a cofibration if it is a retract of a map X Ñ Y1 in which Y1 is obtained from X
by attaching cells; and

↠ a fibration if it has the right lifting property with respect to all inclusions of
the form

Dn
Ñ Dn

ˆ t0u ãÑ Dn
ˆ I.

This model category structure is due to Quillen [Qui67].

Example 3.1.5 ([Qui67]). Let R be a commutative ring with unit, and ChpRq be the
category of (unbounded) cochain complexes. There is a model category structure
on ChpRq in which a map f : C Ñ D is:

„
Ñ a weak equivalence if it induces an isomorphism in cohomology;

ãÑ a cofibration if it is a degreewise monomorphism with degreewise cofibrant
cokernel; and

↠ a fibration if it is a degreewise epimorphism.

This model category structure is called the projective model category structure; see
[MP12, Section 18.5] .

Example 3.1.6 ([Qui67]). Let R be a commutative ring with unit, and ChpRq be the
category of (unbounded) cochain complexes. There is a model category structure
on ChpRq in which a map f : C Ñ D is a

„
Ñ a weak equivalence if it induces an isomorphism in cohomology;

ãÑ a cofibration if it is a degreewise monomorphism; and

↠ a fibration if it is a degreewise epimorphism with a degreewise fibrant kernel.

This model category structure is called the injective model category structure.
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Remark 3.1.7. In this text, we do not distinguish between cochain complexes and
chain complexes since we are not imposing any bounded conditions on them.
However, if we have a cochain complex C with non-zero values concentrated in
non-positive degree, Ci “ 0 for every i ą 0, we will denote it as a chain complex
by using the notation Ci “ C´i.

Proposition 3.1.8 ([MP12, Proposition 18.5.2]). Let ChpRq be the category of cochain
complexes equipped with the projective model category structure, and C P ChpRq.

1. 0 Ñ C is an acyclic cofibration if and only if C is a projective object in ChpRq.

2. If C is cofibrant, then C is degreewise projective.

3. If C is bounded above and degreewise projective, then C is cofibrant

Proposition 3.1.9 ([MP12, Proposition 18.5.4]). Let ChpRq be the category of cochain
complexes equipped with the injective model category structure, and C P ChpRq.

1. C Ñ 0 is an acyclic fibration if and only if C is an injective object in ChpRq.

2. If C is fibrant, then C is degreewise injective.

3. If C is bounded below and degreewise injective, then C is fibrant

Fibrant and cofibrant objects play a fundamental role in model category theory
as they allow us to define and study homotopy theory in a general context. If
an object is not fibrant or cofibrant, by the factorisation axiom, there are nice
substitutes for them that are fibrant or cofibrant.

Definition 3.1.10. Let M be a model category and X P M.

1. A fibrant replacement of X is a fibrant object RX equipped with a weak
equivalence X „

Ñ RX.

2. A cofibrant replacement of X is a cofibrant object QX equipped with a weak
equivalence QX „

Ñ X.

3.2 homotopy between maps

The first step for defining the homotopy category is to define homotopies
between morphisms. In the context of topological spaces, we have two ways
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for defining a homotopy between two maps f , g : X Ñ Y: The first one is by
the cylinder X ˆ I, a homotopy between f and g is a map H : X ˆ I Ñ Y such
that Hp´, 0q “ f and Hp´, 1q “ g; the second one by the paths of Y, this is the
mapping space mappI, Yq with the compact-open topology, a homotopy between
f and g is a map H : X Ñ PathpYq, such that for every x P X, Hpxqp0q “ f pxq and
Hpxqp1q “ gpxq. In topological spaces, these definitions are equivalent, but in a
model category, these definitions need not be equivalent.

Definition 3.2.1. Let M be a model category and X P M. A cylinder object for X
is an object cylpXq together with a diagram

X \ X cylpXq X
i1`i2 „

which factors the folding map IdX ` IdX.

Definition 3.2.2. Two morphism f , g : X Ñ Y in M are said to be left homotopic,
and we denote it by f l

„ g, if there exists a cylinder object cylpXq for X such that
the sum f ` g : X \ X Ñ Y can be extended to a map H : cylpXq Ñ Y

X \ X Y

cylpXq.

f `g

H

Example 3.2.3. In the category of topological spaces, equipped with the classical
model category structure, X ˆ I is a cylinder for X and a left homotopy between
f and g is a map H : X ˆ I Ñ Y such that Hp´, 0q “ f and Hp´, 1q “ g.

Lemma 3.2.4 ([DS95, Lemma 4.7]). Let M be a model category and X, Y P M. If X
is a cofibrant object, then l

„ is an equivalence relation on HomMpX, Yq.

To define right homotopic maps, we must define the paths in a model category.

Definition 3.2.5. Let M be a model category and X P M. A cocylinder object or
path object for X is an object cocylpXq together with a diagram:

X cocylpXq X ˆ X„ p

which factors the diagonal map pIdX, IdXq : X Ñ X ˆ X.
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Definition 3.2.6. Two morphism f , g : X Ñ Y in M are said to be right homotopic,
we denote it by f r

„ g, if there exists a cocylinder object cocylpYq for Y such that
the product map p f , gq : X Ñ Y ˆ Y lifts to a map H : X Ñ cocylpYq

cocylpYq

X Y ˆ Y.

H

p f ,gq

Example 3.2.7. In the category of topological spaces, equipped with the classi-
cal model category structure, PathpYq is a cocylinder object for Y, and a right
homotopy between f and g is a map H : X Ñ PathpYq such that

Hp´qp0q “ f p´q and Hp´qp1q “ gp´q.

Lemma 3.2.8 ([DS95, Lemma 4.15]). Let M be a model category and X, Y P M. If Y
is a fibrant object, then r

„ is an equivalence relation on HomMpX, Yq

Definition 3.2.9. Let M be a model category and f , g : X Ñ Y be a pair of maps.
If f l

„ g and f r
„ g, then we say that f is homotopic to g and we denote it by f „ g.

Proposition 3.2.10 ([DS95, Lemma 4.21]). Let f , g : X Ñ Y be a pair of maps in a
model category M. Then,

1. if X is cofibrant and f l
„ g, then f r

„ g; and

2. if Y is fibrant and f r
„ g, then f l

„ g.

Proposition 3.2.11 ([DS95, Lemma 4.24]). Let f : X Ñ Y be a map in a model category
M between objects that are both fibrant and cofibrant. Then f is a weak equivalence if
and only if there exists g : Y Ñ X such that the composites g ˝ f and f ˝ g are homotopic
to the respective identity maps.

Example 3.2.12. In the classical model category structure on Top, every object
is fibrant, and cofibrant objects are the ones that are retracts of generalised CW-
complex. Then, Whitehead’s theorem, see [Hat02, Theorem 4.5], is a corollary of
the proposition above.

Definition 3.2.13. Let M be a model category. The homotopy category HopMq of
M is the category with the same object as M and, given X, Y P M, the hom-set:

HomHopMqpX, Yq “ HompQX, RYq{ „ .
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The homotopy category of a model category can be characterised by its weak
equivalences by formally inverting them.

Definition 3.2.14. Let M be a category and W be a class of morphism. A functor
F : M Ñ D is said to be a localisation of M with respect to W if:

(i) Fp f q is an isomorphism for each f P W; and

(ii) If G : M Ñ D1 is a functor verifying (i), then there exists a unique functor
G1 : D Ñ D1 such that G1 ˝ F “ G.

Given a model category M, the homotopy category HopMq can be charac-
terised as a localisation of M with respect to the class of weak equivalences.

Theorem 3.2.15 ( [Qui67, Chapter I] ). Let M be a model category. There exists
a localisation functor γ : M Ñ HopMq that is the identity on objects and sends
weak equivalences into isomorphisms in HopMq.

3.3 derived functors

A functor F : M Ñ D from a model category M does not always induce
a functor from the homotopy category. However, the left- and right-derived
functors play the role of the best approximation of a hypothetical functor in the
homotopy category

F̃ : HopMq Ñ M

by the respective side.

Definition 3.3.1. Let M be a model category, γ : M Ñ HopMq be the localisation
functor, and F : M Ñ D be a functor.

(a) A left-derived functor of F, if it exists, is the right Kan extension of F along γ,
this is, it is a functor LF : HopMq Ñ D together with a natural transforma-
tion t : LF ˝ γ Ñ F such that for every other functor G : HopMq Ñ D and
other natural transformation s : G ˝ γ Ñ F, there exists a natural transfor-
mation s1 : F Ñ LF such that the following diagram commutes:

G ˝ γ LF ˝ γ

F.

s

s1˝γ

t
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(b) A right-derived functor of F, if it exists, is the left Kan extension of F along γ,
this is, it is a functor RF : HopMq Ñ D together with a natural transforma-
tion t : F Ñ RF ˝ γ such that for every other functor G : HopMq Ñ D and
other natural transformation s : F Ñ G ˝ γ, there exists a natural transfor-
mation s1 : RF Ñ G that such that the following diagram commutes:

F

LF ˝ γ G ˝ γ.

s
t

s1˝γ

Definition 3.3.2. Let F : M Ñ N be a functor between model categories, and
γ : N Ñ HopN q be localisation functor. A total left-derived functor LF for F is a
functor

LF : HopMq Ñ HopN q

which is a left-derived functor for the composite γ ˝ F : M Ñ HopN q.

Similarly, a total right-derived functor RF for F is a functor

RF : HopMq Ñ HopN q

which is a right-derived functor for the composite γ ˝ F.

The following example shows that (co)limits do not preserve weak equivalences.

Example 3.3.3. Let jn : Sn´1 Ñ Dn be the inclusion of the pn ´ 1q-sphere as the
boundary of the n-disk. Then, consider the following diagram

Dn Sn´1 Dn

˚ Sn´1 ˚.

jnjn

Id

Despite the horizontal arrows being weak homotopy equivalences, the pushouts
of the horizontal arrows are not homotopy equivalents.

Sn´1 Dn Sn´1 ˚

Dn Sn ˚ ˚.

jn

jn



44 model categories

Definition 3.3.4. Let M be a model category, C be a small category such that the
category of functors FunpC,Mq admits a model category structure in which weak
equivalences are object-wise weak equivalences, and F : C Ñ M be a functor. The
homotopy colimit of F is the total left-derived functor of colim evaluated on F, this
is,

hocolim F “ pL colimp´qqpFq.

The homotopy limit of F is the total right-derived functor of lim evaluated on F,
this is,

holim F “ pR limp´qqpFq.

In the context of homological algebra, the existence of a derived functor is
given by the exactness of F and projective or injective resolution [Wei94]. Since
we work in the framework of homotopical algebra, this existence is provided by
Quillen pair.

Definition 3.3.5. Let M and N be two model categories, and L : M Õ N : R
be a pair of adjoint functors. We say that pL, Rq is a Quillen pair if the following
equivalent conditions are satisfied:

1. L preserves cofibrations and acyclic cofibrations;

2. R preserves fibrations and acyclic fibrations;

3. L preserves cofibrations and R preserves fibrations; and

4. L preserves acyclic cofibrations and R preserves acyclic fibrations.

Lemma 3.3.6 (K. Brown [Hov99, Lemma 1.1.12]). Let L : M Õ N : R be a Quillen
pair, then:

1. the left adjoint L preserves weak equivalences between cofibrant objects; and

2. the right adjoint R preserves weak equivalences between fibrant objects.

Corollary 3.3.7. Let M be a model category, and C be a small category such that the
category of functors FunpC,Mq admits a model category in which weak equivalences are
object-wise weak equivalences. If lim: FunpC;Mq Õ M : ∆, where ∆ is the diagonal
functor, form a Quillen pair then:

holim F – lim RF,

where RF : C Ñ M is a fibrant replacement for F. Dually, If ∆ : M Õ FunpC;Mq is a
Quillen pair, then:
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hocolim F – colim QF,

where QF is a cofibrant replacement for F.
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Chapter 4

R E E DY S T R U C T U R E

A Reedy structure on a category R is a powerful tool to induce a model
category structure on the category of functors FunpR,Mq when M is a model
category. Examples of Reedy categories are the simplex category ∆ and its dual
∆op. Roughly speaking, a Reedy structure on a category R is a degree function
ObpRq Ñ N together with two wide subcategories

ÝÑR, the direct category, and
ÐÝR,

the inverse one, satisfying certain compatibility axioms. The main disadvantage
of a Reedy structure is that it does not allow the underlying category to have
non-trivial automorphism. To solve this problem, we will work with generalised
Reedy categories, following Berger-Moerdjick’s work [BM11]. However, we also
refer the reader to Hirschornn’s book [Hir03, Chapter 15] or Reedy’s unpublished
work Homotopy Theory of Model Categories [Ree] to read about classical Reedy
categories.

Definition 4.1. A generalised Reedy structure on a small category R consist of
two wide subcategories:

ÝÑR, the direct category, and
ÐÝR, the inverse one; and a

degree-function d : ObpRq Ñ N satisfying the following axioms:

47
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1. non-invertible morphism in
ÝÑR (resp.

ÐÝR) raise (resp. lower) the degree;
isomorphism in R preserve the degree;

2.
ÝÑR X

ÐÝR “ IsopRq;

3. every morphism f of R factors as f “ g ˝ h with g P
ÝÑR and h P

ÐÝR, and this
factorisation is unique up to isomorphism;

4. if θ ˝ f “ f for θ P IsopRq and f P
ÝÑR, then θ is an identity; and

5. if f ˝ θ “ f for θ P IsopRq and f P
ÐÝR, then θ is an identity.

A generalised Reedy category is a small category equipped with a generalised Reedy
structure.

Remark 4.2. In Berger and Moerdijk’s original work [BM11], the 5-th axiom
corresponds with the notion of dualisable generalised Reedy structure. However,
we include it in the definition because every category that appears in this work
trivially satisfies this axiom.

Example 4.3. If R is a generalised Reedy category, then Rop is also a generalised
Reedy category.

Example 4.4. If P is a filtered poset with degree function d, then it is a generalised
Reedy category with

ÝÑP “ P and
ÐÝP being the discrete category of objects in P .

In fact, this is a (classical) Reedy structure; see [Hir03, Chapter 15]

Example 4.5. Given a finite group G, the orbit category OpGq admits a generalised
Reedy category structure setting

ÝÝÝÑOpGq “ OpGq,
ÐÝÝÝOpGq “ IsopGq, with a degree

function dpG{Hq “ #H.

Example 4.6. More generally, if C is a filtered EI-category with degree function d,
then it is a generalised Reedy category with

ÝÑC “ C, and
ÐÝC “ IsopCq.

4.1 functors and natural transformation

A generalised Reedy category is not just a good tool to induce a model category
structure in the category of functors, as we will see in the next section. The
combinatorics of the generalised Reedy structure also provides a powerful tool
to construct functors and natural transformations. To simplify the discussion,
we treat the EI-category C as a poset. Later, we will see how this intuitive idea
translates to the more general case.
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To shorten notation, given a generalised Reedy category C with degree-function
d, we denote Cn the full subcategory of C spanned by the objects c P C of degree
dpcq ď n.

Notice that C0 contains no non-identity morphisms; thus, define a functor
F : C0 Ñ M is to choose for every c P C0 an object Fpcq.

Now, we turn on the inductive machinery of the generalised Reedy structure
on C. Given a functor F : Cn Ñ M, our purpose is to extend F to Cn`1. Let c P C
be an object of degree n ` 1 and let Fpcq P M. For each object d P Cn with d ă c
we need to choose a morphism Fpdq Ñ Fpcq with the additional property that for
every d1 P Cn d1 ă d ď c the following diagram commutes

Fpd1q

Fpcq.

Fpdq

This is, for every object c P C of degree n ` 1, choose an object Fpcq P M together
with a morphism:

colim
dăc

Fpdq Ñ Fpcq.

Similarly, given two functors F, G : C Ñ M, we can construct a natural transfor-
mation η : F Ñ G by induction. We start by choosing for every c P C0 a morphism
in M

ηc : Fpcq Ñ Gpcq.

Then, given a natural transformation η : pF|Cnq Ñ pG|Cnq, extend it to Cn`1 is
to choose for every object c P C of degree dpcq “ n ` 1, a morphism in M,
ηc : Fpcq Ñ Gpcq such that the following diagram commutes:

colimdăc Fpdq Fpcq

colimdăc Gpdq Gpcq.

ηc

Dually, if we have a functor F : pCnq
op

Ñ M, extend it to a functor in Cn`1 is
equivalent to choose for every c P C of degree dpcq “ n ` 1, an object Fpcq P M
together with a morphism

Fpcq Ñ lim
dăc

Fpdq.



50 reedy structure

Similarly, given two functors F, G : Cop Ñ M, and a natural transformation
η : pF|Cnq Ñ pG|Cnq, extend η to Cn`1 is to choose for every object c P C of degree
n ` 1, a morphism in M, ηc : Fpcq Ñ Gpcq such that the following diagram
commutes:

Fpcq limdăc Fpdq

Gpcq limdăc Gpdq.

ηc

We will devote the rest of this section to formalising these notions and extending
them to the case of EI-categories.

Let R be a generalised Reedy category. For every n P N, the category GnpRq

denotes the full subgroupoid of R spanned by the objects of degree n; the
category

ÝÑRpnq has objects the non-invertible arrows u : s Ñ r in
ÝÑR such that

dprq “ n, and as morphism α : ps u
Ñ rq Ñ ps1 u1

Ñ r1q the commutative squares:

s s1

r r1

u

α0

u1

α1

such that α0 P
ÝÑR and α1 P GnpRq.

Dually, the category
ÐÝRpnq has objects the non-invertible arrows u : r Ñ s in

ÐÝR
such that dprq “ n, and as morphisms α : pr u

Ñ sq Ñ pr1 u1

Ñ s1q the commutative
squares:

r r1

s s1

u

α0

u1

α1

such that α1 P
ÐÝR and α0 P GnpRq.

We denote by sn :
ÝÑRpnq Ñ R, and sn :

ÐÝRpnq Ñ GnpRq the respective domain-
functors, and by tn :

ÐÝRpnq Ñ GnpRq, and tn :
ÐÝRpcq Ñ R the respective codomain-

functors.

Definition 4.1.1. Let R be a generalised Reedy category, M be a cocomplete
category and F : R Ñ M be a functor. We define the latching object of F at r P R
to be

LrF :“ psnq!ptnq
˚
pFqprq “ colim

sÑr
Xs
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where the limit is taken over the full subcategory of
ÝÑR{r of non-invertible mor-

phism.

Proposition 4.1.2. Let P be a filtered poset, and F : P Ñ ModR be a functor. For every
p P P , the latching object of F at p is given by the following formula:

LpF “ colim
Păp

F.

Proof. Given a poset P , and p P P , the category
ÝÑP {p is equivalent to the category

of arrows q Ñ p, i.e., q ă p, and whose morphism are commutative triangles:

q

p.

q1

But this is just the category Păp.

Then, for an EI-category C, the inductive step described at the beginning of
the section can be reformulated to choose an object Fpcq P M together with a
morphism

LcF Ñ Fpcq.

Definition 4.1.3. Let R be a generalised Reedy category, M be a complete
category and F : R Ñ M be a functor. We define the matching object of F at r P R
to be

MrF :“ psnq˚ptnq
˚
pFqprq “ lim

rÑs
Xs

where the limit is taken over the full subcategory of r{
ÐÝR of non-invertible mor-

phism.

Proposition 4.1.4. Let P be a filtered poset, and F : Pop Ñ ModR be a functor. For
every p P P , the matching object of F at p is given by the following formula:

MpF “ lim
Păp

F.

Proof. This result holds by dualising the argument in the proof of Proposition 4.1.2.
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4.2 model category structure

Originally, Reedy categories were introduced to produce a new model category
structure in the category of simplicial objects in a model category M. In this
document, we use the notion of generalised Reedy categories to produce a model
category in the category of functors that allows describing higher limits in terms
of fibrant replacements; see Corollary 3.3.7.

Definition 4.2.1. Let R be a generalised Reedy category, M be a bicomplete cate-
gory, and η : F Ñ G be a natural transformation between functors in FunpR,Mq.
For every r P R we define:

‚ the relative latching map to be the morphism induced by the pushout:

Fprq
ğ

LrF

LrG Ñ Gprq.

‚ the relative matching map to be the morphism induced by the pullback

Fprq Ñ MrF ˆMrG Gprq.

Given a group G, we define by MG the category of objects in M equipped
with a G-action. This is equivalent to the category of functors from the category
consisting of a single object ˚ and Autp˚q “ G. If M is equipped with a cofibrantly
generated model category, see [Hir03, Section 11.6], the category MG carries a
projective model structure; this is, a G-equivariant morphism f : X Ñ Y is a weak
equivalence or a fibration if it is, respectively, a weak equivalence or a fibration
by forgetting the G-action.

Definition 4.2.2. Let R be a generalised Reedy category and M be a model
category. One says that M is R-projective if for each object r P R, the category
MAutprq admits a projective model structure. Moreover, it is said to be R-bijective
if, for every r P R, the forgetful functor U : MAutprq Ñ M also detects cofibrations,
i.e., a morphism f : m Ñ m1 is a cofibration in MAutprq if and only if U p f q is a
cofibration in M .
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Theorem 4.2.3 ([BM11, Theorem 1.6]). Let R be a generalised Reedy category,
and M be a R-projective model category. There is a model category structure on
FunpR,Mq in which a natural transformation η : F Ñ G is:

„
Ñ a weak equivalence if, for every r P R, the morphism ηr : Fprq Ñ Gprq is a

weak equivalence in M;

ãÑ a cofibration if, for every r P R, the relative latching morphism

Fprq \LrF LrG Ñ Gprq

is a cofibration in MAutprq; and

↠ a fibration if, for every r P R, the relative matching morphism

Fprq Ñ MrF ˆMrG Gprq

is a fibration in M.

Remark 4.2.4. If M is a R-bijective model category, we can replace MAutprq by M
in the definition of cofibrations.
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Chapter 5

H I G H E R L I M I T S

Let R be a commutative ring with unit, and C be a small category. The
category of R-modules has all limits and colimits; thus, these constructions define
respective functors:

lim: FunpC, ModRq Ñ ModR, colim: FunpC, ModRq Ñ ModR .

The limit functor is left exact functor but is not right exact. Since the category
of R-modules has enough injectives, the right-derived functor of lim exists, see
[Wei94, Chapter 2]. Given a functor F, there is an injective resolution of functors:

F Ñ I0
Ñ I1

Ñ ¨ ¨ ¨ Ñ In
Ñ . . .

Higher limits of F are the derived functors of lim evaluated in F, i.e., the coho-
mology of the cochain complex obtained from I˚ by applying lim:

H˚
pF; Cq :“ R˚ limp´qpFq “ H˚

plim I˚
q.

57
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Dually, colim is a right exact functor that is not left exact. Then, there exists a
projective resolution:

¨ ¨ ¨ Ñ Pn Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ F.

Higher colimits of F are the homology of the chain complex obtained from P˚ by
applying colim:

H˚pC; Fq “ L˚ colimp´qpFq “ H˚pcolim P˚q.

Classically, higher (co)limits are computed as the cohomology of a cochain
complex associated with the functor; we refer the reader to Grodal’s thesis
[Gro02, Section 2] or Aschbacher, Kessar and Oliver’s book [AKO11, Subsection
III.5.1].

In this chapter, we describe higher limits of functor indexed over filtered
EI-categories using techniques from homotopical algebra instead of homological
algebra.

5.1 homotopy theoretical approach

From now on, C will be a filtered EI-category with degree function d : C Ñ N.
A functor F : C Ñ ModR is considered as an object of FunpC, ChpRqq by setting:
for every c P C, Fpcq to be a cochain complex concentrated in degree 0.

To describe a model category structure in the category of functor FunpC, ChpRqq,
we use the generalised Reedy structure described in Example 4.6 for filtered EI-
categories, that is,

ÐÝC “ IsopCq and
ÝÑC “ C with degree function d.

For practical reasons, we fix the convention that higher colimits are computed in
the category of covariant functors FunpC, ChpRqq and higher limits in the category
of contravariant functor FunpCop, ChpRqq. This is not a strong assumption because
the notion of the generalised Reedy category, see Example 4.3, is self-dual.
Therefore, if F : C Ñ ModR is a covariant functor indexed in a generalised Reedy
category, then F : pCopqop Ñ ModR is a contravariant functor indexed in the
generalised Reedy category Cop.
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Theorem 5.1.1. Let C be a filtered EI-category, R be a ring such that | Autpcq| is
invertible in R for every c P C, and ChpRq be the category of unbounded cochain
complexes equipped with a cofibrantly generated model category. Then, ChpRq is
C-bijective; see Definition 4.2.2.

Proof. As ChpRq is equipped with a cofibrantly generated model category struc-
ture, for every c P C, there is a model category structure on ChpRqAutpcq, see [Bal21,
Section 4.5], in which an Autpcq-equivariant morphism f : C Ñ D is defined to
be:

„
Ñ a weak equivalence if f is a weak equivalence on ChpRq;

ãÑ a cofibration if f verifies LLP with respect to acyclic fibrations; and

↠ a fibration if f is a fibration on ChpRq.

We will prove that under the assumption that | Autpcq| is invertible in R, a
morphism in ChpRqAutpcq is a cofibration if and only if it is a cofibration in ChpRq

by forgetting the Autpcq-action.

Let i : X Ñ Y be a cofibration in ChpRqAutpcq. For every acyclic fibration in
ChpRqAutpcq, p : A ↠ B, and every Autpcq-equivariant commutative diagram

X A

Y B,

f

i „ p

f 1

there exists an Autpcq-equivariant map h : Y Ñ A such that h ˝ i “ f and p ˝ h “ f 1.
Since the class of acyclic fibrations in ChpRqAutpcq and in ChpRq are the same, we
see that i verifies LLP with respect to every acyclic fibration in ChpRq. Thus, we
conclude that i is a cofibration in ChpRq.

Conversely, let i : X Ñ B be an Autpcq-equivariant map which is also a
cofibration in ChpRq, and p : A Ñ B be an Autpcq-equivariant acyclic fibration.
Given an Autpcq-equivariant commutative diagram,

X A

Y B,

f

i „ p

f 1

(4)
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the existence of a morphism h : Y Ñ A between cochain complex such that the
h ˝ i “ f and p ˝ h “ f 1 follows since the class of acyclic fibrations in ChpRq and
ChpRqAutpcq are the same. The map h does not need to be Autpcq-equivariant
map. If not, we define rh : Y Ñ A by rhpyq “ | Autpcq|´1 ř

gPAutpcq ghpg´1yq. One

can check that rh is Autpcq-equivariant. It remains to show that rh is a lift for
Diagram (4):

p ˝ rhpyq “pp| Autprq|
ÿ

g
ghpg´1yqq “ | Autprq|

´1
ÿ

g
gphpg´1yq “

“ | Autprq|
´1

ÿ

g
g f 1

pg´1yq “ rf 1
pyq “ f 1

pyq.

rh ˝ ipxq “| Autprq|
ÿ

g
ghpg´1ipxqqq “ | Autprq|

´1
ÿ

g
gh ˝ ipg´1yq “

“ | Autprq|
´1

ÿ

g
g f pg´1xq “ rf pxq “ f pxq.

Then, i is a cofibration in ChpRqAutpcq. Therefore, ChpRq is C-bijective.

Remark 5.1.2. We only require the model category in ChpRq to be cofibrantly
generated, and, in this thesis, we only consider the projective and injective model
category in ChpRq. Therefore, in the following, we abuse notation saying that R
is a C-bijective ring instead of ChpRq is a C-bijective model category, whenever
ChpRq is equipped with the projective or injective model category.

Now, we present the model category that we will use to compute higher limits.

Proposition 5.1.3. Let C a filtered EI-category, R be a C-bijective ring. Then, there
is a model category structure on the category of functors FunpCop, ChpRqq in which a
natural transformation η : X Ñ Y, is a

„
Ñ weak equivalence if, for every object c P C, the morphism ηc : Xpcq Ñ Ypcq induces

an isomorphism in cohomology;

ãÑ cofibration if, for every object c P C, the morphism ηc : Xpcq Ñ Ypcq is a split
monomorphism with cofibrant cokernel; and

↠ fibration if, for every object c P C, the relative matching morphism,

Xpcq Ñ Ypcq ˆMcY McX,
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is an epimorphism.

We call this model category structure the inverse model category.

Proof. We combine the model category structure for the category of functors
FunpCop, ChpRqq described in Theorem 4.2.3 with the projective model category
structure, see Example 3.1.5. Then, since | Autpcq| is invertible in R for every c P C,
we apply Theorem 5.1.1 to describe the cofibrations.

Corollary 5.1.4. Given a filtered EI-category C, and a C-bijective ring R. A functor
F : Cop Ñ ModR is fibrant if for every c P C, the matching morphism:

Fpcq Ñ McF

is an epimorphism.

Proof. This holds directly by the definition of a fibrant object; see Definition 3.1.2.
Consider the unique natural transformation F Ñ 0. Then, the relative matching
morphism at c P C, described in Proposition 5.1.3, becomes Fpcq Ñ McF. There-
fore, the natural transformation F Ñ 0 is a fibration if and only if, for every c P C,
the morphism Fpcq Ñ McF is an epimorphism.

Now, we present some examples of fibrant functors.

Example 5.1.5. Let P be a filtered poset with an initial object, and M be an
R-module. Then, the constant functor M : Pop Ñ ModR is a fibrant functor.

Example 5.1.6. Let P be the face poset of a shellable complex. Let F : Pop Ñ Vectk

be the functor defined on objects by σ ÞÑ krσs, where krσs is the free k-vector
space generated by the vertices of σ; and the image of an inclusion σ Ă τ by F is
the epimorphism induced by:

s P σ ÞÑ

$

&

%

s if s P τ,

0 otherwise.

Then, F is a fibrant functor.

Example 5.1.7. Let G be a group and H ď G be a subgroup. Let I be the category
with two objects 0 and 1 and:

HomIp0, 0q “ G HomIp0, 1q “ ∅
HomIp1, 1q “ t1u HomIp1, 0q “ G{H,
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and the composition is described by the product in G and by the left action of G
on G{H; see Example 1.2. If F : Iop Ñ ModQ is a functor, then, by Corollary 5.1.4,
F is fibrant iff the matching morphism at 1,

Fp1q Ñ M1F,

is an epimorphism. A direct computation shows that M1F “ Fp0qH. Then we
can conclude that a functor is fibrant iff the natural morphism ε : Fp1q Ñ Fp0qH

is an epimorphism. This category was presented in Aguadé’s paper [Agu89] in
which he realises various polynomial algebras over Fp as the cohomology rings
of spaces constructed as homotopy colimits.

Dually, to compute higher colimits, we present the following model category
structure in the category of covariant functor.

Proposition 5.1.8. Let C a filtered EI-category, R be a C-bijective ring. Then there is a
model category structure on the category of functors FunpC, ChpRqq in which a natural
transformation η : X Ñ Y, is a:

„
Ñ weak equivalence if, for every object c P C, the morphism ηc : Xpcq Ñ Ypcq induces

an isomorphism in cohomology;

ãÑ cofibration if, for every object c P C, the relative latching morphism,

Xpcq \LcX LcY Ñ Ypcq,

is a monomorphism; and

↠ fibration if, for every object c P C, the morphism Xpcq Ñ Ypcq is a split epimorphism
with fibrant kernel.

We call this model category structure the direct model category.

Proof. As in Proposition 5.1.3, we combine the model category structure for the
category of functors FunpC, ChpRqq described in Theorem 4.2.3 with the injective
model category structure, see Example 3.1.6. Then, since | Autpcq| is invertible in
R for every c P C, we can apply Theorem 5.1.1 to describe the cofibrations.

Corollary 5.1.9. Given a filtered EI-category C, and a C-bijective ring R. A functor
F : C Ñ ModR is cofibrant if for every c P C, the latching morphisms:

LcF Ñ Fpcq
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is a monomorphism.

Proof. This holds directly by dualising Corollary 5.1.4

Example 5.1.10. Let P be a filtered poset with an initial object, and M be an
R-module. Then, the constant functor M : P Ñ ModR is a cofibrant functor.

Example 5.1.11. Let P be the face poset of a simplicial complex, and pD, Iq be a
twin pair of functors. That is, D : P Ñ Ab is a covariant functor and I : Pop Ñ Ab
is a contravariant functor, such that:

1. for every σ P P , Dpσq “ Ipσq, and

2. every pullback diagram:

σ X σ1 σ

σ1 τ,

i1

i

j
j1

induces a commutative diagram

Ipσ X σ1q Ipσq

Ipσ1q Ipτq.

Dpiq

Ipi1q
Dpj1q

Ipjq

Then, D is cofibrant in the direct model category, and I is fibrant in the inverse
model category. For more details, we refer the reader to Notbohm-Ray [NR05].

The following results describe how to compute higher limits via fibrant replace-
ment.

Proposition 5.1.12. Let C be a filtered EI-category, and R be a C-bijective ring. Given a
functor F : Cop Ñ ModR, then

Hi
pF; Cq “ Hi

plim RFq

where RF : Cop Ñ ChpRq is a fibrant replacement of F in FunpCop, ChpRqq with the
inverse model category; see Proposition 5.1.3.

Proof. By Lemma 3.3.6, the pair of functors ∆ : ChpRq Ô FunpPop, ChpRqq : lim
is a Quillen pair because the diagonal functor ∆ sends weak equivalences and
cofibrations into weak equivalences and cofibrations. Therefore, by Corollary 3.3.7,
homotopy limits can be computed by a fibrant replacement. Then, we are done by
the fact that higher limits are the cohomology of the homotopy limit of a functor
concentrated in degree 0, see [Wei94, Corollary 10.5.7],

Hi
pF; Cq “ Hi

pholim Fq “ Hi
plim RFq.
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Thanks to this result, we extract directly vanishing bounds from the height of a
fibrant replacement.

Definition 5.1.13. Let C be a bounded cochain complex. The height of C, denoted
by hpCq, is defined to be the integer n such that Ck “ 0 for all k ą n and Cn ‰ 0.
For a functor F : Cop Ñ ChpRq we define the height of F to be the supremum of
the heights, i.e.,

hpFq “ supthpFpcqq | c P Cu.

Corollary 5.1.14. Let C be a filtered EI-category, and R be a C-bijective ring. Let
F : Cop Ñ ModR be a functor. If RF : Cop Ñ ChpRq is a fibrant replacement of F such
that hpRFq “ n, then

Hi
pC; Fq “ 0

for every i ą n.

Proof. This follows directly from Proposition 5.1.12.

Dually, we can compute higher colimits by a cofibrant replacement

Proposition 5.1.15. Let C be a filtered EI-category, and R be a C-bijective ring. Given a
functor F : C Ñ ModR, then

HipF; Cq “ Hipcolim QFq

where QF : C Ñ ChpRq is a cofibrant replacement of F in FunpC, ChpRqq with the direct
model category; see Proposition 5.1.8.

Proof. This result holds by dualising the proof of Proposition 5.1.12.

As before, we can obtain vanishing bounds from the depth of a cofibrant
replacement.

Definition 5.1.16. Let C be a bounded chain complex. The depth of C, denoted by
depthpCq, is the integer n such that Ck “ 0 for all k ą n and Cn ‰ 0. For a functor
F : C Ñ ChpRq we define the depth of F to be the supremum of the heights, i.e.,

depthpFq “ suptdepthpFpcqq | c P Cu.

Corollary 5.1.17. Let C be a filtered EI-category, and R be a C-bijective ring. Let
F : C Ñ ModR be a functor. If QF : Cop Ñ ChpRq is a cofibrant replacement of F such
that depthpQFq “ n, then

HipC; Fq “ 0
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for every i ą n.

Proof. This follows directly from Proposition 5.1.15.

5.2 on fibrant replacement constructions

The idea underlying the preceding results is that higher limits can be computed
by means of a fibrant replacement rather than an injective resolution. Conse-
quently, the goal of this section is to present a systematic approach for computing
a fibrant replacement of a given functor. To describe it explicitly, we need the
following notions.

Definition 5.2.1. Let C be a filtered EI-category, and R be a C-bijective ring. A
functor F : Cop Ñ ModR is said to be locally fibrant at c P C, if for every d such
that either there is a non-invertible arrow d Ñ c or d “ c, the matching map:

Fpdq Ñ MdF

is an epimorphism.

Remark 5.2.2. A functor F : Cop Ñ ChpRq is fibrant if and only if it is locally fibrant
at c for all c P C.

Our desired fibrant replacement will not change the functor whenever it is
already fibrant. The method we present proceeds by induction on the degree of
the objects. At each step, if the object is not locally fibrant, we need to transform
the functor using the following construction.

First, we review the notion of the mapping cocylinder and its factorisation
property.

Definition 5.2.3. Let f : C Ñ D be a map between unbounded cochain complexes.
The mapping cocylinder of f is the cochain complex cocylp f q whose degree n
part is

cocylp f q
n :“ Cn

ˆ Dn´1
ˆ Dn,

and differential is given by the formula

Bpc, d, d1
q “ pBc, d1

´ f pcq ´ Bd, Bd1
q.
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Proposition 5.2.4 ([Wei94, Section 1.5]). Let f : C Ñ D be a morphism between
cochain complexes. Then, there is a factorisation of f :

C cocylp f q D

c pc, 0, f pcqq

pc, d, d1q d1

i π

where i is a monomorphism inducing an isomorphism in cohomology, and π is a split
epimorphism.

Next, we introduce a new concept that provides us with a factorisation property
similar to the mapping cocylinder.

Definition 5.2.5. A morphism f : C Ñ D between cochain complexes is said to be
truncatable if hpCq ă hpDq, and the differential DhpDq´1 Ñ DhpDq is onto.

Definition 5.2.6. Let f : C Ñ D be a truncatable morphism between cochain
complexes with hpDq “ n ` 1.

1. The truncation of D is the cochain complex TD whose degree k part is

pTDq
k :“

#

Dk if k ď n
0 if k ą n,

and the truncation of f is the morphism T f : C Ñ TD, defined by

pT f q
k :“

#

f k if k ď n
0 if k ą n.

2. The truncated mapping cocylinder of f , denoted by cocylTp f q, is the mapping
cocylinder of the morphism Tp f q

cocylTp f q :“ cocyl
´

C
Tp f q
Ñ TD

¯

.

Proposition 5.2.7. Let f : C Ñ D be a truncatable morphism between cochain complexes.
Then, f factors through the truncated mapping cocylinder as a weak equivalence followed
by an epimorphism,

C „
Ñ cocylTp f q Ñ D.
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Proof. The inclusion i : C Ñ cocylTp f q is the one given by the mapping cocylinder,
see Proposition 5.2.4. The morphism π : cocylTp f q ↠ D is given by:

πk :“

$

’

&

’

%

0 if k ą n ` 1
BD : Dn Ñ Dn`1 if k “ n ` 1

πDk : Ck ˆ Dk´1 ˆ Dk Ñ Dk if k ď n,

where πDk is the projection and BD is the differential of D.

Now, we have all the ingredients to describe how to construct fibrant replace-
ments for a given functor F : Cop Ñ ModR. The generalised Reedy structure on C
allows us to follow an inductive strategy.

In the full subcategory of C spanned by the objects of degree 0, there are
no morphisms between different objects. So, for every c P C of degree 0, the
matching object McF “ 0, thus, the first step is to define

RFpcq :“ Fpcq.

Assume that RF is already defined in the full subcategory of objects of degree
less than n. In order to define RF on c P C of degree n, we need to choose a
factorisation of the composite εc : Fpcq Ñ McF Ñ McRF as a weak equivalence
followed by an epimorphism. That is, to choose an object RFpcq together with a
weak equivalence Fpcq Ñ RFpcq and an epimorphism RFpcq Ñ McRF such that
the following diagram commutes:

Fpcq McF

RFpcq McRF.

„ (5)

To construct this factorisation properly, we follow the next rules:

rule 1: If McRF is concentrated in degree 0 and εc is surjective. Then, define
RFpcq as Fpcq and the trivial factorisation of εc,

Fpcq RFpcq “ Fpcq McRF.
IdFpcq εc
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rule 2: If the composite εc is truncatable. Then, define RFpcq as the trun-
cated mapping cocylinder cocylTpεcq and the factorisation described in Proposi-
tion 5.2.7.

Fpcq Ñ cocylTpεcq Ñ McRF.

rule 0: In general, define RFpcq as the mapping cocylinder cocylpεcq and the
factorisation described in Proposition 5.2.4,

Fpcq Ñ cocylpεcq Ñ McRF.

Note that rule 1 and rule 2 can be considered guidelines that the user can
omit since one can always apply rule 0 and, in each case, the transformation
becomes a fibrant replacement. Thus, by choosing each step to follow every rule
or just rule 0, we can produce a custom fibrant replacement that is optimal for
our purpose. For example, in Chapter 7, the fibrant replacement applying all
rules when it is possible will play a central role. But in Chapter 8, for practical
reasons, we will work with the fibrant replacement constructed just by applying
only rule 0. Thus, to simplify the notation, we give a name to both extreme
cases.

Definition 5.2.8. Let C be a filtered EI-category, R be a C-bijective ring and
F : Cop Ñ ModR be a functor. The functor TF : Cop Ñ ChpRq denote the fibrant
replacement of F constructed inductively following the next rules:

1. if F is locally fibrant at c, TFpcq :“ Fpcq;

2. if εc : Fpcq Ñ McTF is truncatable, TFpcq “ cocylTpεcq; and

3. otherwise, TFpcq “ cocylpεcq.

Notice that the truncability of the morphism εc : Fpcq Ñ McTF implies that
hpMcTFq ą 0. Thus, if εc is truncatable, then F cannot be locally fibrant at c.

Definition 5.2.9. Let C be a filtered EI-category, R be a C-bijective ring, and
F : Cop Ñ ModR be a functor. The cocylinder of F, denoted by cocyl pFq, is the
fibrant replacement of F constructed inductively by choosing for every c P C,

cocyl pFq pcq :“

$

&

%

Fpcq if dpcq “ 0,

cocylpεcq otherwise.
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We end this section with an example that illustrates the difference between
both fibrant replacements and shows how TF could induce vanishing bounds
directly.

Example 5.2.10. Let N be the poset of natural numbers with the trivial filtration
IdN : N Ñ N, and F : Nop Ñ Ab be a functor. Notice that the matching object
at n ą 0, is the value of the functor at n ´ 1 and the matching morphism is just
Fpn ´ 1 ă nq, this is,

Fpnq
Fpn´1ănq

ÝÑ MnF “ Fpn ´ 1q.

Therefore, F is locally fibrant at n iff for every k ď n, Fpk ´ 1 ă kq : Fpkq Ñ Fpk ´ 1q

is an epimorphism. Assume the morphisms Fp0 ă 1q is not surjective. This
implies that F is not locally fibrant at 1; thus, we need to define TFp1q to be the
mapping cocylinder of Fp0 ă 1q.

x1 ´ Fp0 ă 1qpx0q Fp1q

px0, x1q Fp0q ˆ Fp1q Fp0q

px0, x1q x0.

Now, observe that the differential of TFp1q is an epimorphism, so the map
ε2 : Fp2q Ñ M2TF “ TFp1q is truncatable, thus we define TFp2q to be the truncated
mapping cocylinder of ε2. More precisely, TFp2q is the cochain complex whose
degree n part is:

TFp2q
n :“

$

’

’

’

&

’

’

’

%

Fp0q ˆ Fp1q if n “ 1

Fp0q ˆ Fp1q ˆ Fp2q if n “ 0

0 otherwise,

and the non-zero differential, B : Fp0q ˆ Fp1q ˆ Fp2q Ñ Fp0q ˆ Fp1q, is given by the
formula

Bpx0, x1, x2q “ px0 ´ Fp0 ă 2qpx2q, x1 ´ Fp1 ă 2qpx2qq.

The matching map TFp2q Ñ M2TF “ TFp1q is given by

Fp0q ˆ Fp1q Ñ Fp0q Fp0q ˆ Fp1q ˆ Fp2q Ñ Fp0q ˆ Fp1q

px0, x1q ÞÑ x1 ´ Fp0 ă 1qpx0q px0, x1, x2q ÞÑ px0, x1q.
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A short computation proves that we can reiterate this construction and define
TFpnq to be: Fp0q, if n “ 0; cocylpFp0 ă 1qq, if n “ 1; otherwise:

pxi ´
ř

iăn Fpi ă nqpxnqq
ś

iăn Fpiq

pxiq
ś

iďn Fpiq.

Note that for every n P N, hpTFpnqq ď 1. Therefore, it follows from Corol-
lary 5.1.14 that higher limits vanish for degrees greater than 1,

Hn
pN; Fq “ Hn

plim TFq “ 0 if n ą 1.

However, for every n P N, hpcocyl pFq pnqq “ n, so this fibrant replacement does
not give directly a vanishing bound applying Corollary 5.1.14.

The fibrant replacement TF can be used to prove directly that the well-known
Mittag-Leffler condition for the vanishing of higher limits on towers, see [Wei94,
Section 3.5], implies H1pN; Fq “ 0.

5.2.1 Some properties of the cocylinder

Let P be a graded poset and F : Pop Ñ ModR be a functor. The higher limits
of F restricted to Pzt1̂u are the cohomology R-modules of the matching object of
a fibrant replacement of F at 1̂. In particular, it is for the cocylinder of F,

Hi
pPzt1̂u; Fq – Hi

pM1̂cocyl pFqq.

Moreover, an explicit description of the last non-trivial differential of the matching
object Mpcocyl pFq could help us to know if we can apply rule 2 at p P P . Thus,
we devote this subsection to prove the following result about this differential.



5.2 on fibrant replacement constructions 71

Theorem 5.2.11. Let P be graded poset, and let F : Pop Ñ ModR be a func-
tor. Given p P P with dppq “ n ě 1, the matching object Mpcocyl pFq at
cohomological height n ´ 1 satisfies,

pMpcocyl pFqq
n´1

“
ź

cP∆p

Fpc0q.

Moreover, if n ě 2, the matching object Mpcocyl pFq at cohomological height
n ´ 2 satisfies,

pMpcocyl pFqq
n´2

“

n´1
ź

i“0

ź

cPdip∆pq

Fpc0q,

and the differential pMpcocyl pFqqn´2 B
ÝÑ pMpcocyl pFqqn´1 is defined as fol-

lows, for c P ∆p and x P pMpcocyl pFqqn´2,

Bpxqc “ p´1q
n´1Fpc1 Ñ c0qpxd0pcqq `

n´1
ÿ

i“1

p´1q
n´i´1xdipcq.

As an immediate consequence, we obtain, by Definition 5.2.9, the following
two results.

Lemma 5.2.12. Let P be a graded poset, and F : Pop Ñ ModR be functor. Given p P P
with dppq “ n ě 1, the cocylinder cocyl pFq at cohomological heights n and n ´ 1,
cocyl pFq

n´1
ppq

B
ÝÑ cocyl pFq

n
ppq, satisfies,

cocyl pFq
n

ppq “
ź

cP∆p

Fpc0q,

cocyl pFq
n´1

ppq “
ź

cP∆p

Fpc0q ˆ

n´1
ź

i“0

ź

cPdip∆pq

Fpc0q,

and the differential B is defined as follows, for c P ∆p and x P cocyl pFq
n´1

ppq,

Bppxqc “ xc ` p´1q
nFpc1 Ñ c0qpxd0pcqq `

n´1
ÿ

i“1

p´1q
n´ixdipcq.

Proof. For p P P of degree greater than 2, the result holds by Definition 5.2.9. If
p P P has degree 1 the result hold since

ś0
i“0

ś

cPdip∆pq Fpc0q “ Fppq.
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Lemma 5.2.13. Let P be a graded poset, and F : Pop Ñ ModR be a functor. Given
p P P with dppq “ n ě 2 and q ≺ p, the cocylinder homomorphism

cocyl pFq
n´1

pq ă pq : cocyl pFq
n´1

ppq Ñ cocyl pFq
n´1

pqq

satisfies,

cocyl pFq
n´1

ppq “
ź

cP∆p

Fpc0q ˆ

n´1
ź

i“0

ź

cPdip∆pq

Fpc0q,

cocyl pFq
n´1

pqq “
ź

cP∆q

Fpc0q,

and for all c P ∆q and x P cocyl pFq
n´1

ppq,

cocyl pFq
n´1

pq ă pqpxqc “ xcăp.

Proof of Theorem 5.2.11. By Definition 5.2.9, the result is true for dppq “ 1, and we
proceed by induction on the degree n “ dppq of p P P . If q ă p, then dpqq ď n ´ 1,
and we have that cocyl pFq

n´1
pqq “ 0 unless q ≺ p. Then, by the induction

hypothesis and Lemma 5.2.12,

pMpcocyl pFqq
n´1

“
ź

q≺p

ź

cP∆q

Fpc0q “
ź

cP∆p

Fpc0q.

For the description of pMpcocyl pFqqn´2, notice that, for each q ă p, the cocylinder
of F verifies cocyl pFq

n´2
pqq “ 0 unless n ´ 1 ď dpqq ď n ´ 2. By the induction

hypothesis and Lemma 5.2.13, for dpqq “ n ´ 1 and dprq “ n ´ 2, r, q ă p, we have

cocyl pFq
n´2

pqq “
ź

cP∆q

Fpc0q ˆ

n´2
ź

i“0

ź

cPdip∆qq

Fpc0q and cocyl pFq
n´2

prq “
ź

cP∆r

Fpc0q,

and x P cocyl pFq
n´2

pqq is mapped by the homomorphism cocyl pFq
n´2

pr ă qq to
the tuple of cocyl pFq

n´2
prq with value xcăq at the chain c P ∆r. Thus, the inverse

limit pMpcocyl pFqqn´2 is given by

pMpcocyl pFqq
n´2

“ L ˆ L1,

where

L “
ź

q≺p

n´2
ź

i“0

ź

cPdip∆qq

Fpc0q “

n´2
ź

i“0

ź

cPdip∆pq

Fpc0q,
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and where L1 consists of the tuples

pxqqq≺p P
ź

q≺p

ź

cP∆q

Fpc0q

such that, if r ă q1, q2 ă p, dpq1q “ dpq2q “ n ´ 1, dprq “ n ´ 2, c P ∆r, then

pxq1qcăq1 “ pxq2qcăq2 .

From this description, it turns out easily that L1 “
ś

cPdn´1p∆pq Fpc0q, and hence
we get the description of pMpcocyl pFqqn´2 in the statement.

To prove that the formula for the differential holds, it is enough to check that,
for every q ≺ p, the following diagram commutes,

ś

cP∆p
Fpc0q

ηn´1
//
ś

cP∆q
Fpc0q

śn´1
i“0

ś

cPdip∆pq Fpc0q

B

OO

ηn´2
//
ś

cP∆q
Fpc0q ˆ

śn´2
i“0

ś

cPdip∆qq Fpc0q,

Bq

OO

where B is given as in the statement, Bq is given by induction, and Lemma 5.2.12,
and the horizontal arrows were constructed in the previous part of this proof as
follows,

ηn´1
pxqc “ xcăp, for c P ∆q, x P pMpcocyl pFqq

n´1,

ηn´2
pxqc “

$

&

%

xcăp, for i “ 0, . . . , n ´ 2, c P dip∆qq, x P pMpcocyl pFqqn´2,

xdn´1pcăpq, for c P ∆q, x P pMpcocyl pFqqn´2.

Now consider x P pMpcocyl pFqqn´2 and c P ∆q. Then the following computa-
tion finishes the proof, where we write c1 “ c ă p for simplicity,

ηn´1pBpxqqc “ pBpxqqcăp

“ p´1q
n´1Fpc0 ă c1qpxd0pc1qq `

n´1
ÿ

i“1

p´1q
n´i´1xdipc1q

“ p´1q
n´1Fpc0 ă c1qpxd0pc1qq `

n´2
ÿ

i“1

p´1q
n´i´1xdipc1q ` xdn´1pc1q

“ Bqpηn´2
pxqqc.
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5.3 a cofibrant replacement construction.

This thesis focuses on the description of higher limits. As such, detailed
instructions for constructing fibrant replacements were presented in the preceding
section. Nevertheless, it is imperative not to miss the opportunity to provide a
method for computing higher colimits by giving at least one strategy to construct
cofibrant replacements. To produce a cofibrant replacement of a given functor,
we need the notion of mapping cylinder.

Definition 5.3.1. Let f : C Ñ D be a map between unbounded cochain complexes.
The mapping cylinder of f is the chain complex cylp f q whose degree n part is:

cylp f qn :“ Cn ˆ Cn´1 ˆ Dn,

and whose differential is given by the formula:

Bpc, c1, dq “ pBc ` c1, ´Bc1, Bd ´ f pc1
qq.

Proposition 5.3.2 ([Wei94, Section 1.5]). Let f : C Ñ D be a morphism between chain
complexes. Then f factors through the mapping cylinder:

C cylp f q D

c pc, 0, 0q

pc, c1, dq f pcq ` d

„

as a split monomorphism followed by an epimorphism that induces an isomorphism in
cohomology.

Let C be a filtered EI-category and R be a C-bijective ring. We construct a
cofibrant replacement of a functor F : C Ñ ModR by induction on the filtration.
For every object c P C of degree 0, we have that McF “ 0. Therefore, we start by
defining

QFpcq :“ Fpcq.

Assume that QF is defined in the full subcategory of objects of degree less than
n. To define QF on c P C of degree n, we need to choose a factorisation of
the composite εc : LcQF Ñ LcF Ñ Fpcq as a monomorphism followed by weak
equivalence. That is, to choose an object QFpcq together with a monomorphism
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LcQFpcq Ñ QFpcq and a weak equivalence QFpcq Ñ Fpcq such that the following
diagram commutes:

LcQF QFpcq

LcF Fpcq.

„ (6)

Proposition 5.3.2 provides such a factorisation of εc using the mapping cylinder,

LcQF Ñ QFpcq “ cylpεcq Ñ Fpcq.





Chapter 6

A C Y C L I C I T Y O F M A C K E Y F U N C TO R S F O R
P O S E T S

Mackey functors are a generalisation of group representations. They abstract
how representations of subgroups of a given group can be combined to form
representations of the entire group in a more general context. Mackey functors
naturally appear in algebraic topology, homological algebra, and, obviously,
representation theory.

In particular, Mackey functors are related to lim- and colim-acyclicity. In this
chapter, we introduce the notion of Mackey functors for posets inspired by the
classical one [Web00]. We also show how Mackey functors with quasi-unit are
related to the pseudo-projectivity condition introduced by Díaz [DR09]. In the
case of the underlying poset being filtered, these notions agree with the cofibrant
functors.

A Mackey functor for a group G over a commutative ring with unit R is a pair
of functor pM˚, M˚q from the category of G-sets to the category of R-modules
such that M˚ is covariant, M˚ is contravariant, both coincide on objects, and other
axioms that we are not going to cite here, for more details see Webb’s paper
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[Web00]. Given J, K ď H subgroups of G, the action of the Mackey functors in
the homogeneous G-sets, G{H, G{J and G{K, are related by the Mackey formula

M˚
prιH

J sq ˝ M˚rιH
K sq “

ÿ

xPrJzH{Ks

M˚prιJ
JXxKsq ˝ M˚prcxsq ˝ M˚

prιKJxXKsq (7)

where cx is the conjugation by x morphism, ι¨¨ is the inclusion and rJzH{Ks is a
set of representatives in G for the double cosets JzH{K.

If we restrict these functors to the meet-semilattice of central subgroups of G,
with meet defined as the intersection, the Mackey formula (7) becomes

M˚
prιH

J sq ˝ M˚prιH
K sq “

¨

˝

ÿ

xPrJzH{Ks

M˚prcxsq

˛

‚˝ M˚prιJ
JXKsq ˝ M˚

prιKJXKsq

To define Mackey functors for posets mimicking this formula, we substitute the
element

´

ř

xPrJzH{Ks M˚prcxsq

¯

by a certain kind of endomorphisms that commute

with the composite equivalent to M˚prιJ
JXKsq ˝ M˚prιKJXKsq.

Definition 6.1. Let P be a poset, R a commutative ring with unit, and F : P Ñ C
a functor. Given p P P , a endomorphism of R-modules α P EndRpFppqq (or
automorphism α P AutRpFppqq) is said to be F-linear if, for every q ă p, the
following condition holds:

α ˝ Fpq ă pq “ Fpq ă pq ˝ β,

where β P EndRpFpqqq (or β P AutRpFpqqq). We use the notation EndF
Rppq (or

AutF
Rppq) to denote the submonoid (or subgroup) of F-linear endomorphisms (or

automorphisms) of Fppq.

Example 6.2. Given r P R, the homothety x ÞÑ rx is an example of F-linear
endomorphism. In particular, every identity is F-linear.

Definition 6.3. Let P be a filtered meet-semilattice and R be a commutative ring
with unit. A pair of functors pF, Gq is said to be a Mackey functor if F : P Ñ ModR

is covariant, G : P op Ñ ModR is contravariant, Fppq “ Gppq for all p P P , and for
all q ă p, k ă p there exist αpp, q, kq P EndF

Rpqq such that

Gpq ă pq ˝ Fpk ă pq “ αpp, q, kq ˝ Fpk ^ q ă qq ˝ Gpk ^ q ă kq.

We say that pF, Gq has a quasi-unit if, for every q ă p, the endomorphism αpp, q, qq

is an automorphism.
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The term quasi-unit is borrowed from [JM92, 5.7 Definition], and it is related to
acyclicity.

Example 6.4. Recall that a twin functor over the face poset of a simplicial complex
P is a pair of functors pD, Iq from P to Ab such that:

1. D : P Ñ Ab is covariant and I : Pop Ñ Ab is contravariant,

2. for every σ P P , Dpσq “ Ipσq, and

3. every pullback diagram:

σ X σ1 σ

σ1 τ,

i1

i

j
j1

induces a commutative diagram

Ipσ X σ1q Ipσq

Ipσ1q Ipτq.

Dpiq

Ipi1q
Dpj1q

Ipjq

Twin functors are a particular case of Mackey functor with α “ Id.

We also define weak Mackey functor by dropping the contravariant functoriality
and the meet-semilattice constraint.

Definition 6.5. Let P be a poset. A functor F : P Ñ ModR is a weak Mackey functor
if for every pair q ă p, there exists a morphism in ModR, Gpq ă pq : Fppq Ñ Fpqq

such that the composite

Fpqq
Fpqăpq
ÝÑ Fppq

Gpqăpq
ÝÑ Fpqq

is an F-linear endomorphism αpp, qq P EndF
Rpqq, and for k ă p such that q ­ď k,

ImpGpq ă pq ˝ Fpk ă pqq Ď ImFpqq.

The functor F is said to have a quasi-unit if, for every p ă q, αpp, qq P AutF
Rpqq.

Remark 6.6. Notice that the covariant part of a Mackey functor is a weak Mackey
functor.

Another condition related to colim-acyclicity is the pseudo-projectivity of
functors in DCC posets.

Definition 6.7. A functor F : P Ñ Ab over a DCC poset is pseudo-projective at
p P P if, for every finite subset Q Ă Pďp and every element ‘qPQxq P

À

qPQ Fpqq,
the condition:

ÿ

qPQ

Fpq ă pqpxqq “ 0
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implies that xq P ImFpqq “
ř

kăq Im Fpk ă qq for every q P max Q. We say that F
is pseudo-projective if it is pseudo-projective at p for every p P P .

First, we show that a weak Mackey functor with quasi-unit over a DCC poset
is pseudo-projective.

Theorem 6.8. Let P be a DCC poset and F : P Ñ Ab be a weak Mackey functor
with a quasi-unit. Then, F is pseudo-projective, and hence, it is colim-acyclic.

Proof. Let F : P Ñ ModR be a weak Makey functor with quasi-unit. Let p P P , Q
be a finite subset of Pďp, and ‘qPQxq P

À

qPQ Fpqq such that:

ÿ

qPQ

Fpq ă pqpxqq “ 0.

For k P max Q, we prove that xk P ImFpkq. One can assume without loss of
generality that p R Q, then apply the morphism Gpk ă pq to the equation above:

0 “ Gpk ă pqp
ÿ

qPQ

Fpq ă pqpxqqq “
ÿ

qPQ

pGpk ă pq ˝ Fpq ă pqqpxqq

“ pGpk ă pq ˝ Fpk ă pqpxkq `
ÿ

qPQ
q‰k

pGpk ă pq ˝ Fpq ă pqqpxqq, (8)

First, we show that the second addend in Equation (8) belongs to ImFpkq. We can
split this addend as:

ÿ

qPQ
qăk

pGpk ă pq ˝ Fpq ă pqqpxqq `
ÿ

qPQ
q ­ďk

pGpk ă pq ˝ Fpq ă pqqpxqq.

If q ă k ă p, we have Fpq ă pqpxqq “ Fpk ă pq ˝ Fpq ă kqpxqq. Then, there exists
α P AutF

Rpkq an F-linear automorphism such that the composite can be written as

Gpk ă pq ˝ Fpk ă pq ˝ Fpq ă kqpxqq “ α ˝ Fpq ă kqpxqq.

Since α is F-linear, there exists β P AutRpFpqqq such that

Gpk ă pq ˝ Fpk ă pq ˝ Fpq ă kqpxqq “ α ˝ Fpq ă kqpxqq “ Fpq ă kq ˝ βpxqq.
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Thus, we conclude that the element Gpk ă pq ˝ Fpq ă pqpxqq P ImFpkq. In the other
case, q ­ď k, we are done after applying the definition of weak Mackey functor,

pGpk ă pq ˝ Fpq ă pqqpxqq P ImFpkq.

Next, apply the definition of Mackey functor again to the first addend of
Equation (8), Gpk ă pq ˝ Fpk ă pqpxkq “ αpxkq for some α P AutF

r pkq. Then, we
solve this term in the same equation obtaining

αpxkq “ ´
ÿ

qPQ
q‰k

pGpk ă pq ˝ Fpq ă pqqpxqq.

As the right side of this identity belongs to ImFpkq, there exists finite many
elements yl P Fplq for l ă k such that

αpxkq “ ´
ÿ

qPQ
q‰k

pGpk ă pq ˝ Fpq ă pqqpxqq “
ÿ

lăk

Fpl ă kqpylq.

As α is invertible and F-linear, we can solve for xk as follows,

xk “
ÿ

lăk

pα´1
˝ Fpl ă kqqpylq “

ÿ

lăk

pFpl ă kq ˝ βlqpylq

for some automorphisms βl P AutRpFplqq. This implies that xk P ImFpkq, and we
are done.

In the case of a filtered poset, we show how a functor F : Pop Ñ ModR is
pseudo-projective if and only if it is cofibrant. However, for just a DCC poset
P , the functor can be shown to be pseudo-projective if and only if it satisfies
the same condition as cofibrant functors but without requiring the poset to be
filtered.

Definition 6.9. Let P be a poset and F : P Ñ Ab be a functor. The functor F is
locally injective at p P P if the natural map induced by colimit

colim
Păp

F Ñ Fppq

is a monomorphism. The functor F is said to be locally injective if it is locally
injective at p for every p P P .
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Note that in a filtered poset, locally injective functors are the cofibrant ones.

Theorem 6.10. Let P be a DCC poset, and F : P Ñ Ab be a functor. Then F is
locally injective if and only if it is pseudo-projective.

In the case of P being a filtered poset, Theorem 6.10 says that pseudo-projective
functors are cofibrant; therefore, we reprove Díaz’s result about the colim-
acyclicity of pseudo-projective functors [DR09]. We summarise this chapter
in the following diagram.

Mackey (poset) Weak Mackey Pseudo-projective Cofibrant

colim-acyclic

[DR09]

We devote the rest of the chapter to the proof of Theorem 6.10. The proof is
divided into several lemmas.

Lemma 6.11 ([DR09, 2.6]). Let P be a DCC poset, and tQnu be a sequence of subsets of
P such that Qn ă Qn´1. Then, there exits N P N such that Qn “ ∅ for every n ą N.

Lemma 6.12. Let P be a DCC poset, p P P and F : P Ñ Ab be a functor such that F
is pseudo-projective at p. Let x “ ‘qăpxq P

À

qăp Fpqq satisfy

ÿ

qăp
Fpq ă pqpxqq “ 0.

Then, there is a sequence txnuně0, xn “
À

qăp xn
q P

À

qăp Fpqq, with x0 “ x,

ÿ

qăp
Fpq ă pqpxn

q q “ 0, xn`1
´ xn

“
ÿ

kăqPmax supppxnq

yk,q ‘ ´Fpk ă qqpyk,qq,

rxn`1s “ rxns in colimPăp F, and supppxn`1q ă supppxnq, for any n ě 0, where
yk,q P Fpkq, In addition, there exists N ą 0 such that xn

q “ 0 for all q ă p if n ě N.

Proof. This is a finer reformulation of [DR09, Lemma 2.3], and we provide details.
We define x´1 “ 0 and work by induction on n ě 0, assuming that xn has
already been constructed satisfying the properties in the statement. Then, as
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ř

qăp Fpq ă pqpxn
q q “ 0 and F is pseudo-projective at p, for every q P max supppxnq

we have that xn
q P ImFpqq, i.e., there exists ‘kăqyk,q P

À

kăq Fpkq such that

xn
q “

ÿ

kăq

Fpk ă qqpyk,qq.

For every pair pk, qq with k ă q ă p, we set

xk,q “

$

’

’

’

&

’

’

’

%

yk,q if k ă q P max supppxnq,

xn
q if k “ q R max supppxnq,

0 otherwise,

and we define xn`1 “
À

qăp xn`1
q by

xn`1
q “

ÿ

kěq

xq,k.

Then

ÿ

qăp
Fpq ă pqpxn`1

q q “
ÿ

qăp
Fpq ă pqp

ÿ

kěq

xq,kq “
ÿ

qďkăp

Fpq ă pqpxq,kq. (9)

In this last sum, if q “ k for k R max supppxnq, the corresponding addend is
Fpq ă pqpxn

q q. The rest of the addends can be reordered as follows,

ÿ

qăkăp
kPmax supppxnq

Fpq ă pqpyq,kq “
ÿ

kăp
kPmax supppxnq

Fpk ă pq
`

ÿ

qăk

Fpq ă kqpyq,kq
˘

“
ÿ

kăp
kPmax supppxnq

Fpk ă pqpxn
k q.

Hence the sum in Equation (9) equals
ř

qăp Fpq ă pqpxn
q q, and this is 0 by hypoth-

esis. From the construction above, it easily follows that

xn`1
´ xn

“
ÿ

kăqPmax supppxnq

yk,q ‘ ´Fpk ă qqpyk,qq,

and, from here, it is clear that rxn`1s “ rxns in colimPăp F and that the supports
are related by supppxn`1q ă supppxnq. From this latter condition and Lemma 6.11,
we obtain N ą 0 with the stated property.
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Lemma 6.13. Let P be a DCC poset, F : P Ñ Ab, and p P P . If F is pseudo-projective
at p, then F is locally injective at p.

Proof. Let ε : colimPăp F Ñ Fppq be the corresponding natural map and consider
rxs P kerpεq with x P

À

qăp Fpqq. By Lemma 6.12, there exists a sequence txnuně0

with xn P
À

qăp Fpqq such that x0 “ x, rxn`1s “ rxns and xN “ 0 for N big enough.
Hence rx0s “ rxNs “ r0s “ 0 and the Lemma is proven.

Lemma 6.14. Let P be a DCC poset, F : P Ñ Ab, and p P P . If F is locally injective at
q for every q ď p, then F is pseudo-projective at q for every q ď p.

Proof. Since Pďp is a DCC poset, we proceed by induction. If q ď p is minimal in
P , then F is pseudo-projective at q by definition. Thus, consider now q ď p such
that F is pseudo-projective at k for all k ă q. We show that F is pseudo-projective
at q too. So let x “ ‘kăqxk P

À

kăq Fpkq be such that

ÿ

kăq

Fpk ă qqpxkq “ 0.

This is equivalent to that εprxsq “ 0 for the natural map ε : colimkăq F Ñ Fpqq.
By hypothesis, F is cofibrant at q, and hence rxs “ 0. In turn, this equality is
equivalent to the existence of elements yl,k P Fplq for l ă k ă q such that finitely
many of them are different from zero and with

x “ ‘kăqxk “
ÿ

lăkăq

yl,k ‘ ´Fpl ă kqpyl,kq, (10)

which implies that, for any k ă q,

xk “
ÿ

kăl

yk,l ´
ÿ

lăk

Fpl ă kqpyl,kq. (11)

Let K “ tk P Păq | D l ă k with yl,k ‰ 0u. We are about to show that we
can choose the elements yl,k’s appearing in (10) subject to the constraint that
max K Ď supppxq. Thus let m P max Kz supppxq. Then

xm “ 0 “ ´
ÿ

lăm

Fpl Ñ mqpyl,mq. (12)
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We can rewrite Equation (10) as follows,

x “
ÿ

lămăq

yl,m ‘ ´Fpl ă mqpyl,mq `
ÿ

lăkăq
k‰m

yl,k ‘ ´Fpl ă kqpyl,kq

“

´

‘lăm yl,m

¯

´

´

‘m
ÿ

lăm

Fpl ă mqpyl,mq

¯

`
ÿ

lăkăq
k‰m

yl,k ‘ ´Fpl ă kqpxl,kq.

which, by Equation (12), we can simplify to

x “ y `
ÿ

lăkăq
k‰m

yl,k ‘ ´Fpl ă kqpyl,kq, (13)

where y “ ‘lămyl,m P ‘lămFplq. As F is pseudo-projective at m ă q by induction
hypothesis, we apply Lemma 6.12 to the element y to obtain a sequence of
elements tynuně0 such that y0 “ y, ryn`1s “ ryns for all n ě 0, and yN “ 0 for
N big enough. In addition, as supppyn`1q ă supppynq and supppyq ă tmu, we
obtain that

yn
´ yn`1

“
ÿ

lăk
kPmax supppynq

zl,k ‘ ´Fpl ă kqpzl,kq “
ÿ

lăkăm

zl,k ‘ ´Fpl ă kqpzl,kq (14)

for elements zl,k P Fplq. Define y0
l,k “ yl,k, assume by induction that

x “ yn
`

ÿ

lăkăq
k‰m

yn
l,k ‘ ´Fpl ă kqpyn

l,kq, (15)

for elements yn
l,k P Fplq, and note that this holds for n “ 0 by Equation (13). For

the induction step, we may write

x “ yn`1
´ yn`1

` yn
`

ÿ

lăkăq
k‰m

yn
l,k ‘ ´Fpl ă kqpyn

l,kq

“ yn`1
`

ÿ

lăkăq
k‰m

yn`1
l,k ‘ ´Fpl ă kqpyn`1

l,k q,
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for elements yn`1
l,k P Fplq, where in the last equality we have employed Equation

(14). Hence, for n “ N, Equation (15) simplifies to

x “
ÿ

lăkăq
k‰m

yN
l,k ‘ ´Fpl ă kqpyN

l,kq.

Repeating this process for every element m P max Kz supppxq we find a decompo-
sition similar to Equation (10),

x “
ÿ

lăkăq

y1
l,k ‘ ´Fpl ă kqpy1

l,kq,

and satisfying that, for K1 “ tk P Păq | D l ă k with y1
l,k ‰ 0u, we have

max K1
z supppxq ă max Kz supppxq.

Iterating this procedure we obtain a sequence of sets tKnuně0 and decompositions
similar to Equation (10) with K0 “ K, K1 “ K1, and such that

max Kn`1
z supppxq ă max Kn

z supppxq.

Setting Qn “ max Knz supppxq and applying Lemma 6.11 we find N such that
QN “ H, i.e., max KN Ď supppxq. For the corresponding decomposition,

x “
ÿ

lăkăq

ŷl,k ‘ ´Fpl ă kqpŷl,kq,

let k belong to max supppxq so that we have, similarly to Equation (11),

xk “
ÿ

kăl

ŷk,l ´
ÿ

lăk

Fpl ă kqpŷl,kq.

If
ř

kăl ŷk,l ‰ 0, there exists some l ą k such that ŷl,k ‰ 0, which is a contradiction
with max KN Ď supppxq. Hence,

ř

kăl ŷk,l “ 0 and xk P ImFpkq.
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Chapter 7

VA N I S H I N G B O U N D S

Given a functor F : Pop Ñ Ab over a filtered poset, in Example 5.2.10, we show
how TF could help us to provide a vanishing bound for the higher limits of F.
The goal of this chapter is to provide different conditions that imply the natural
morphism described in the construction of TF,

εp : Fppq Ñ MpTF,

is truncatable. For short, we say that an object p P P is F-truncatable if the natural
map εp : Fppq Ñ MpTF is truncatable.

Notice that for every p P P , Fppq is a cochain complex concentrated in degree 0.
Then, p is F-truncatable if and only if hpMpTFq ą 0, and the last non-trivial
differential of MpTF,

pMcTFq
hpMcTFq´1

Ñ pMcTFq
hpMcTFq,

is an epimorphism.

89
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7.1 combinatorial vanishing bound

Given a functor F : Pop Ñ Ab, in the inductive construction of a fibrant
replacement RF, once the first mapping cocylinder has been done, one only
needs to check that the last non-trivial differential of MpRF is an epimorphism.
This condition holds if the matching object of RF at p is a direct sum of mapping
cocylinders. However, this condition is strong because we only have to check
MpRF at its last non-zero dimensions. In this section, we introduce a method to
construct a labelling for a given filtered poset P that controls the height of any
functor F : Pop Ñ Ab.

The intuitive idea behind the labelling we will present in this section is as
follows. Let F : Pop Ñ Ab be a functor on a filtered poset, p P P , and n be
the height of TFppq. If the support of TFn and TFn´1 in Păp has as many
maximal elements as connected components, then MpTF will behave like a sum
of cocylinders at heights n and n ´ 1.

Definition 7.1.1. Let P be a filtered poset, p P P and S be a subposet of Păp. We
say that p closes a circuit in S if

# MaxpSq ą # ConexpSq,

where MaxpSq denotes the maximal objects in S and ConexpSq its connected
components.

In a combinatorial point of view, if “p closes a circuit in S”, then there is an
undirected circuit that contains p in the Hasse diagram of S Y tpu.

p p

S S1

Figure 17: p closes a circuit in S1 but not in S.

Definition 7.1.2. Let P be a filtered poset. We define the labelling function of P
to be the map B : P Ñ N defined inductively as follows: For objects of degree 0
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or 1, we assign the values 0 or 1 respectively. Next, we assume that B has been
defined for every object of degree less than n. For a fixed p P P of degree n, we
define m as the maximum label among objects strictly below p, and Bp as the full
subposet of Păp containing all the objects s ă p whose label is either m ´ 1 or m.
That is,

Bp “ ts P Păp | m ´ 1 ď Bpsq ď mu.

We define the label of p by the following rule:

Bppq “

$

&

%

m ` 1 if p closes a circuit in Bp,

m otherwise.

Example 7.1.3. Consider the poset generated by the following Hasse diagram,

p4 p1

p7

p8 p5 p2 p0.

p6 p3

We will show how to define its labelling function inductively. First, by definition
Bpp0q “ 0 and Bpp1q “ Bpp2q “ Bpp3q “ 1,

Bpp4q 1

Bpp7q

Bpp8q Bpp5q 1 0.

Bpp6q 1

Now, we focus on the object p4. We have to check if p4 closes a circuit in Bp4 .
This subposet has only two objects, p1 and p0. Then Bp4 has a maximum and a
connected component; therefore, Bpp4q “ 1. Similarly, Bpp5q “ Bpp6q “ 1,
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1 1

Bpp7q

Bpp8q 1 1 0.

1 1

Next, p7 closes a circuit using the last two labels, i.e., Bp7 contains two maximal
objects, p4 and p5 but only a connected component, thus Bpp7q “ 2. To finish the
labelling, note that Bp8 has two connected component and two maximal objects,
p7 and p6,

1 1

2

Bpp8q 1 1 0.

1 1

In spite of p8 closing a circuit in P , it does not close any circuit in Bp8 . Then,
Bpp8q “ 2, and the labelling function in P is given by the following diagram:

1 1

2

2 1 1 0.

1 1

The main goal of this section is to show how the labelling functions gives a
vanishing bound for the higher limits of any functor.
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Theorem 7.1.4. Let P be a filtered poset, and B : P Ñ N its associated labelling
function. For every functor F : Pop Ñ Ab,

Hi
pP ; Fq “ 0,

if i ą sup B.

To prove this theorem, we need the following technical lemma.
Lemma 7.1.5. Let F : Pop Ñ Ab be a functor over a filtered poset, B : P Ñ N the
labelling function associated to P , and p P P be an object such that:

(a) For every s ă p, hpTFpsqq ď Bpsq;

(b) hpMpTFq “ maxtBpsq | s ă pu ě 1; and

(c) Bppq “ maxtBpsq | s ă pu.

Then p is truncatable.

Proof. For short, name m :“ maxtBpsq | s ă pu. By (b), hpMpTFq “ m, thus p
is F-truncatable iff the differential B : pMpTFqm´1 Ñ pMpTFqm is surjective. In
addition, by (c), p does not close any circuit in Bp. This implies that:

lim
Bp

TF “
à

sPmaxBp

TFpsq.

Notice that, by (a), every TFpsq is a mapping cocylinder of height less or equal
than m, so the differential

plim
Bp

TFq
m´1

ÝÑ plim
B

TFq
m

is an epimorphism. So, to prove the lemma, it is enough to check that the
horizontal morphism, induced by the restriction, in the following diagram are
isomorphisms:

plimPăp TFqm plimBp TFqm

plimPăp TFqm´1 plimBp TFqm´1.

By (a), if s R Bp, then hpTFpsqq ď Bpsq ď m ´ 2, so for every s R Bp, TFipsq “ 0 for
i “ m ´ 1, m; and Bp is upper convex; thus, by Proposition 2.1.13, we conclude
that the horizontal arrows are isomorphism and we are done.
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Now, we prove the main theorem of this section.

Proof of Theorem 7.1.4. As stated in Proposition 5.1.12, it suffices to demonstrate
that hpTFppqq ď Bppq.

We proceed by induction on the degree of the objects. If p P P has degree 0 or
1 the result holds by definition.

Next, let p P P be an object of degree n, and assume that hpTFpqqq ď Bpqq for
every q P P of degree less than n. By the induction hypothesis,

hpMpTFq ď maxthpTFpsqq | s ă pu ď maxtBpsq | s ă pu “: m.

If hpMpTFq ă m or Bppq “ m ` 1, the result hold because:

hpTFppqq ď hpMpTFq ` 1 ď m ď Bppq.

Therefore, we only need to prove the result when hpMpTFq “ m. There are two
options regarding Bppq: either Bppq “ m ` 1, or Bppq “ m.

In the first case the result holds by the following inequality:

hpTFppqq ď hpMpTFq ` 1 “ m ` 1.

Otherwise, Bppq “ m, we apply Lemma 7.1.5 to conclude that p is truncatable,
and hence

hpTFppqq “ hpMpTFq “ m.

Example 7.1.6. Let K be a simplicial complex of finite dimension d, and P be its
face poset. The labelling function at P coincides with the dimension of every
simplex. For 0-simplices and 1-simplices, the result is true by definition. Now,
assume that for every k ă n, and every σ k-simplex, Bpσq “ k. Let τ be an
n-simplex, and let σ1, σ2 two maximal faces of τ. Then we have the following
subposet of P :

τ

σ1 σ2

σ1 X σ2
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By the induction hypothesis, Bpσ1q “ Bpσ2q “ n ´ 1 and Bpσ1 X σ2q “ n ´ 2,
then Bτ has at least a connected component with two maximal objects. Therefore
Bpτq “ n.

Bpτq

n ´ 1 n ´ 1

n ´ 2

Let A be an abelian group and A : Pop Ñ Ab be the constant functor with value
A. In that case, the conclusion of Theorem 7.1.4 is the well-known fact that
HipP ; Aq – Hip|K|; Aq “ 0 for i ą d.

7.1.1 Maximal tree

Here we present a direct application of Theorem 7.1.4. A filtered tree is a
filtered poset P whose Hasse diagram contains no undirected cycles. If P is a
filtered poset, a maximal tree of P is a filtered tree T such that T contains every
object of P . Then, if H the Hasse diagram of P , and T is a maximal tree of P , we
will show how the labelling function of P is controlled by the number of missing
arrows in T whose codomains have different degrees. That is,

#tdpqq | p Ñ q P PzHu.

Ĺ

Figure 18: Maximal tree of a given poset.
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Theorem 7.1.7. Let P be a filtered poset, and T be a maximal tree of H, the Hasse
diagram of P . Let DpT q “ #tdpqq | p Ñ q P HzT u. Then, for every functor
F : Pop Ñ Ab:

Hi
pP ; Fq “ 0

for every i ą 2DpT q ` 1.

We divide the proof of this theorem into two lemmas.

Lemma 7.1.8. Let P be a filtered poset. If there exists a maximal tree T of the Hasse
diagram H of P in which the target of every missing arrow in HzT have the same degree,
i.e.,

#tdpqq | p ≺ q P HzT u “ 1,

then sup B ď 3.

Proof. Let H be the Hasse diagram of P , and T be a maximal tree of H with the
desired property. Let Q be the family of the target of the missing arrows,

Q :“ tq P P | p ≺ q P HzT u.

First, we prove that, for every p P
Ť

qPQ Păq, we have Bppq ď 1. Fixed
p P

Ť

qPQ Păq, there are no q P Q such that q P Pďp, because every q P Q
has the same degree. Then, every covering relation in Pďp is in the maximal tree
T ; thus, we conclude that there are no circuits in Pďp. This implies that, for every
p P

Ť

qPQ Păq, we have Bppq ď 1.
Next, assume by contradiction that there exists s P P such that Bpsq “ 4.

Choosing a minimal s such that Bpsq “ 4, we have that maxtBps1q | s1 ă su “ 3.
By Definition 7.1.2, s closes a circuit in Bs, and this implies that there is a circuit
s Ñ ¨ ¨ ¨ Ð si Ñ ¨ ¨ ¨ Ð s in H with 2 ď Bpsiq ď 3. But for every q P Q and every
cover relation p Ñ q R HzT , we have that Bppq ď 1. Therefore, there are no edges
p Ñ q, with q P Q in the circuit s Ñ ¨ ¨ ¨ Ð si Ñ ¨ ¨ ¨ Ð s, so it is in T , which
contradicts that T is a tree.

Lemma 7.1.9. Let P be a filtered poset. If T is a maximal tree of the Hasse diagram H
of P with the property that

#tdpqq | p Ñ q P HzT u “ n,

then, sup B ď 2n ` 1.
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0 1

0 1 3

1 2

Figure 19: A poset in which the bound described at Lemma 7.1.8 is optimal.

Proof. As in Lemma 7.1.8, we set Q “ tq P P | p Ñ q P HzT u, and let
i0 ă ¨ ¨ ¨ ă ij ă ¨ ¨ ¨ ă in be the sequence of degrees of q P Q. Let Pj be the wide
subposet of P generated by the covering relations in

T Y tp Ñ q | p Ñ q R T , dpqq ď iju.

Let Bj : Pj Ñ N be the labelling function of Pj. A direct computation shows
that for every p P P , Bjppq ď Bkppq for every j ď k; moreover, if dppq ď ij, then
Bjppq “ Bkppq.

We prove by induction that sup Bj “ 2j ` 1. For i “ 0, the result holds by
Lemma 7.1.8. Now, assume that the result holds for ij and consider Pj`1.

Assume by contradiction that there exists s P Pj`1 such that Bj`1psq “ 2j ` 4,
and choose s a minimal with this property, i.e., we have

maxtBps1
q | s1

ă su “ 2j ` 3.

By Definition 7.1.2, s closes a circuit in Bs, this implies the existence of a circuit
s Ñ ¨ ¨ ¨ Ð si Ñ ¨ ¨ ¨ Ð s in H with 2j ` 2 ď Bpsiq ď 2j ` 3. But, by induction the
hypothesis, for every q P Q with dpqq “ ij`1 and every p ď q, Bj`1ppq ď 2j ` 1.
Then the circuit s Ñ ¨ ¨ ¨ Ð si Ñ ¨ ¨ ¨ Ð s is in T which is a contradiction.

It is possible to show that the bound introduced in Lemma 7.1.9 is optimal by
reiterating the poset in Figure 19; see Figure 20.

Proof of Theorem 7.1.7. This holds by applying Lemma 7.1.9 to Theorem 7.1.4.

We obtain, as a direct corollary, the following result.

Corollary 7.1.10. Let P be a filtered tree, and F : Pop Ñ Ab be a functor. Then
HipP ; Fq “ 0 if i ą 1.
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0 1

0 1 3 3

1 2

0 1 5

0 1 3 3

1 2 3 4

Figure 20

7.2 inductive vanishing bound

Given a functor F : Pop Ñ Ab, the big deal with the F-truncability of an object
p P P is that it is expressed in terms of TF, more precisely in terms of MpTF.
However, pTFq |Păp is a fibrant replacement of F |Păp , and by Proposition 4.1.4,

Hm
pPăp; Fq – Hm

pMpRFq. (16)

In the particular case of m “ hpMpRFq, the truncability of the morphism
εp : Fppq Ñ MpRF, is determined by the m-th cohomology group of MpRF,
that is, εp is truncatable if

Hm
pMpRFq “ cokerpMpRFm´1 B

ÝÑ MpRFm
q “ 0.

In this section, we prove that for every p P P , a homogeneous bound for the
higher limit of F|Păp induces a bound in the higher limits of F.
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Theorem 7.2.1. Let P be a filtered poset, and F : Pop Ñ Ab be a functor. If for
every p P P , HkpPăp; Fq “ 0 for every k ě n, then:

Hk
pP ; Fq “ 0

for every k ą n.

We divide the proof of this theorem into several lemmas.

Lemma 7.2.2. Let P be a filtered poset and F : Pop Ñ Ab be a functor. If hpTFq “ m,
then, for every 0 ď n ď m, there exist p P P such that hpTFppqq “ n. Furthermore, if
n ą 0, we can select p P P such that hpMpTFq “ n ´ 1.

Proof. If n “ 0, by definition of TF (see Definition 5.2.8), every p P P of degree 0
verifies hpTFppqq “ 0. Thus, assume that 0 ă n ď m.

We proceed by contradiction. Let n P N with 0 ă n ă m such that hpRFppqq ‰ n
for all p P P , and let S be the sub-poset of P given by:

S :“ ts P P | hppTFqsq ą nu.

By hypothesis S is non-empty because hpTFq “ m ą n, so there exists some p P P
such that hpTFppqq “ m. Moreover, by Definition 5.2.8, S does not contain any
locally injective object because n ą 0.

Now, let s be a minimal object in S , that is, hpTFpsqq ą n, and for every t ă s,
hpTFptqq ă n. This implies that hpMsTFq ă n because

hpMsTFq “ hplim
Păs

TFq ď maxthpTFptqq | t ă su ă n.

If s is F-truncatable, we obtain a contradiction:

n ă hpTFpsqq “ hpcocylTpεs : Fs Ñ MsTFqq “ hpMsTFq ă n.

Then s is not F-truncatable, this implies the following inequalities:

n ă hpTFpsqq “ hpcocylpεs : Fs Ñ MsTFqq “ hpMsTFq ` 1 ď n

leading again to a contradiction. This implies that there exists at least a p P P
such that hpTFppqq “ n.
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To show that we can choose it with the additional property of hpMpTFq “ n ´ 1,
let p P P with hpTFppqq “ n ą 0, minimal with this property, this is, for
every s ă p, hpTFppqq ă n. Since p is minimal, hpMpTFq ă n; therefore, by
Definition 5.2.8, s must be non F-truncatable and:

n “ hpTFpsqq “ hpcocylpFpsq Ñ MsTFqq “ hpMsTFq ` 1

Now we know that the fibrant replacement TF does not jump any height,
the next lemma tells us that the higher limits of the functor F restricted to the
subcategory Păp control the F-truncability of p.

Proposition 7.2.3. Let P be a filtered poset, F : Pop Ñ Ab be a functor, and n be a
positive integer. The following are equivalent:

1. HkpPăp; Fq “ 0, for every p P P and k ě n.

2. HnpPăp; Fq “ 0, for every p P P .

3. The fibrant replacement TF has height hpTFq ď n.

Proof. By the inductive construction of the fibrant replacement and Equation (16),
for every p P P , it is verified that:

Hk
pPăp; Fq “ Hk

plim
Păp

TFq “ Hk
pMpTFq. (17)

The implication 1ñ 2 is clear. To show that 2ñ3, assume by contradiction
that hpTFq ą n ą 0. By Lemma 7.2.2, there exists an object p P P such that
hpTFppqq “ n ` 1 and hpMpTFq “ n. Then, by Equation (17):

Hn
pPăp; Fq “ Hn

pMpTFq “ cokerpBn´1 : pMpTFq
n´1

Ñ pMpTFq
n
q.

However, HnpPăp; Fq “ 0 if and only if Bn´1 is an epimorphism if and only if
εp : Fppq Ñ MpTF is truncatable so, by definition, TFppq “ cocylTpεpq. Therefore,
hpTFppqq “ n ‰ n ` 1 which is a contradiction.

Finally, we need to prove 3ñ1. First, notice that from Equation (17) follows
that 1 is equivalent to that, for every p P P , and k ě n, HkpMpTFq “ 0. Fix p P P ,
since hpTFppqq ď hpTFq ď n, it is enough to show that HnpMpTFq “ 0.

There is no loss of generality in assuming that hpMpTFq “ n and hpTFppqq “ n.
Therefore, εp : Fppq Ñ MpTF must be truncatable, and hence the differential
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Bn´1 : pMpTFqn´1 Ñ pMpTFqn is an epimorphism. Thus, from Equation (17), we
conclude

Hn
pPăp; Fq “ Hn

pMpTFq “ cokerpBn´1 : pMpTFq
n´1

Ñ pMpTFq
n
q “ 0.

In the case of P being a filtered poset of finite length, we prove can relax the
bound in the hypothesis of Theorem 7.2.1 for a partial bound for the higher limits
of F|Păp for p of certain consecutive degrees.

Theorem 7.2.4. Let P be a filtered poset of finite length, and F : Pop Ñ Ab be a
functor. If there exists m ď lengthpPq and n P N such that, for every p P P with
dppq ă m, we have:

Hk
pPăp; Fq “ 0 for n ď k.

Then, HkpP ; Fq “ 0 for n ` lengthpPq ´ m ă k.

Proof. Let RF : Pop Ñ ChpAbq be the functor defined by:

RFppq :“

$

&

%

TFppq if dppq ď m,

cocylpFppq Ñ MpRFq Otherwise.

Note that this is a fibrant replacement of F. By Proposition 7.2.3, for every p P P
with dppq ď m, we have:

hpRFppqq “ hpTFppqq ď n

Now, we prove by induction that, for every object p P P with dppq “ m ` k for
some k ě 0, we have

hpRFq ď n ` k.

The basis case is done. Now, assume the result is true for k ´ 1, and let p P P
with dppq “ k. Then,

hpRFppqq “hpcocylpFppq Ñ MpRFqq

ďhpMpRFq ` 1 ď maxthpRFpqqq | q ď pu ` 1

ďn ` k ´ 1 ` 1 “ n ` k.

Then, hpRFq ď n ` lengthpPq ´ m which implies the desired vanishing bound.
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7.3 vanishing bound by atomic functors

A strategy that has been used in the literature is filtering a functor by subfunc-
tors such that their successive quotients take the value zero except on one object.
These last functors are called atomic functors. More precisely, given a filtered
poset P and an abelian group A, the atomic functor of A at p0 P P , denoted by
ApA, p0q : Pop Ñ Ab, is the functor defined by:

ApA, p0qppq “

#

A if p “ p0

0 otherwise.

The goal of this section is to describe higher limits of atomic functors via ordinary
cohomology of the nerve of a subposet, inspired by the next example.

Example 7.3.1. Let P be a functor and R be a commutative ring with unit. Then,
the higher limits of the constant functor R : Pop Ñ ModR are isomorphic to the
ordinary cohomology of the geometric realisation of P with coefficients in R, see
[AKO11, III.5.4],

H˚
pP ; Rq – H˚

p|P |; Rq.

First, we characterise the higher limits of atomic functors in terms of (reduced)
ordinary cohomology.

Theorem 7.3.2. Let P be a filtered poset and p0 P P . For every abelian group A:

Hi
pP ;ApA, p0qq – rHi´1

p|Pąp0 |; Aq.

Proof. Let ApA, p0q : Pop Ñ Ab be the atomic functor at p0 P P , and F : Pop Ñ Ab
be the extension by zero of the constant functor A : Pop

ąp0 Ñ Ab, that is, F|Pąp0
“ A

and Fppq “ 0 for all p ­ą p0.

Notice that HipP ; Fq – Hip|Pąp0 |; Aq. Thus, it is enough to prove that:

cocyl pAq
0

“ A and, cocyl pAq
i

“ cocyl pFq
i´1 for i ą 0. (18)

The supports of both functors are contained in Pěp0 , and it is an upper convex
poset. By Proposition 2.1.13, there is no loss of generality into assuming that p0

is the initial object of P .
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We prove Equation (18) by induction on the degree of the objects. For p0, the
only object of degree 0, the result trivially holds. Next, assume that the result
holds for every object of degree less than n and let p P P of degree n.

Limits in the category of cochain complex are computed degree-wise; therefore,
it is verified that Mpcocyl pAq

0
“ A, and Mpcocyl pAq

i
“ Mpcocyl pFq

i´1 for
i ą 0. A short computation shows that cocylp0 Ñ Mpcocyl pAqq0 “ A, and

cocylp0 Ñ Mpcocyl pAqq
i

“ cocylpA Ñ Mpcocyl pFqq
i´1

for each i ą 0.

Lemma 7.3.3. Let P be a filtered poset, tpiuiPI be a collection of objects of P with the
same degree, and tAiuiPI be a collection of abelian groups then:

Hk
pP ;

à

iPI
ApAi, piqq “

à

iPI
Hk

pP ;ApAi, piqq.

Proof. This lemma holds since the direct sum of fibrant replacements, constructed
as in Chapter 5, is a fibrant replacement of the direct sum.

Now, we are able to prove the main theorem of this section.

Theorem 7.3.4. Let P be a finite filtered poset and F : Pop Ñ Ab be a functor.
If there exists k ą 0 such that, for every p P P , rHnp|Pąp|; Fppqq “ 0, for n ą k;
then

Hn
pP ; Fq “ 0 for n ą k.

By Theorem 7.3.2 this previous result is equivalent to the following lemma.

Lemma 7.3.5. Let P be a finite filtered poset and F : Pop Ñ Ab be a functor. If there
exists n ą 0 such that HipP ;ApFppq, pqq “ 0 for every p P P and every i ą n, then

Hk
pP ; Fq “ 0

for every k ą n.

Proof. Let m be the length of P . Given 0 ď k ď m, we define Fk : Pop Ñ Ab to be
the subfunctor of F defined by Fkppq “ Fppq if p has degree less or equal to k; and
Fkppq “ 0, otherwise. By construction, there is a chain of natural transformation
of functors:

F0
Ñ F1

Ñ ¨ ¨ ¨ Ñ Fm´1
Ñ Fm

“ F.
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Given 0 ă k ď m, we define Fpkq :“ cokerpFk´1 Ñ Fkq the cokernel of the inclusion.
Notice that by construction, for every 0 ă k ď m Fpkq “

À

dppq“k ApFppq, pq, and,
by hypothesis and Lemma 7.3.3,

Hi
pP ; Fq – Hi

pP ;
à

dppq“k
ApFppq, pqq –

à

dppq“k
Hi

pP ;ApFppq, pqq “ 0

for every i ą n.

Moreover, we have a short exact sequence of functors:

0 Ñ Fk´1
Ñ Fk

Ñ Fpkq
Ñ 0

inducing a long exact sequence:

0 Ñ H0
pP ; Fk´1

q Ñ H0
pP ; Fk

q Ñ H0
pP ; Fpkq

q Ñ H1
pP ; Fk´1

q Ñ . . .

¨ ¨ ¨ Ñ Hi
pP ; Fk´1

q Ñ Hi
pP ; Fk

q Ñ Hi
pP ; Fpkq

q Ñ Hi`1
pP ; Fk´1

q Ñ . . .

Now, we proceed by induction. For k “ 1,

¨ ¨ ¨ Ñ Hi
pP ; F0

q Ñ Hi
pP ; F1

q Ñ Hi
pP ; Fp1q

q Ñ . . .

By Lemma 7.3.3, this exact sequence becomes

0 Ñ
à

dppq“0
Hi

pP ;ApFppq, pqq Ñ Hi
pP ; F1

q Ñ
à

dppq“1
Hi

pP ;ApFppq, pqq Ñ . . .

By hypothesis, for every p P P , HipP ;ApFppq, pqq “ 0 if i ą n, then HipP ; F1q “ 0
if i ą n.

Assume that HipP ; Fjq “ 0 for ever i ą n and every j ă k. Then the long exact
sequence specialises to:

Ñ 0 Ñ Hn`1
pP ; Fk

q Ñ Hn`1
pP ; Fpkq

q Ñ 0 Ñ Hn`2
pP ; Fk

q Ñ . . .

and, by hypothesis, HipP ; Fpkqq “
À

dppq“k HipP ;ApFppq, pqq “ 0, if i ą n. Then
HipP ; Fkq “ 0 for i ą n and every 0 ď k ď m. So, we conclude that HipP ; Fq “ 0
for i ą n.
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Example 7.3.6. Let pW, Sq be a Coxeter group, J Ă S, ď the Bruhat order on W.
Let W J be the subposet of W defined by

W J
“ tw P W | ws ą w for all s P Ju.

Let P be the subposet of W J obtained by removing the top element. Let p P P
and n “ dp1̂q ´ dppq ´ 2. By [BW82, Theorem 5.4], the geometric realisation of
Pąp is:

1. a n-sphere if Pąp “ Wąpzt1̂u, or

2. contractible in another case.

Let p P P minimal with the property that the geometric realisation of Pąp is not
contractible and let n “ dp1̂q ´ dppq ´ 2. Then, for every functor F : Pop Ñ Ab,
the homology groups verifies

rHi
p|Pąp|; Fppqq “ 0 for every i ą n.

Thus, by Theorem 7.3.4 we conclude

Hi
pP ; Fq “ 0 for every i ą n.





Chapter 8

S H E A F C O H O M O LO GY O F C L-S H E L L A B L E
P O S E T S

Sheaf cohomology is an important tool in algebraic geometry, topology, and
combinatorics, and it has been extensively studied by researchers in these and
other fields. For example, Everitt and Turner show how Khovanov homology
[ET14] can be described as the cellular cohomology of a certain sheaf [ET15].
Recently, they have computed the cohomology of a certain sheaf in arrangement
lattices [ET22a] by the deletion-restriction method that they introduce in a previous
work [ET22b].

In this chapter, we focus on the sheaf cohomology of CL-shellable posets.
We begin by considering finite or Alexandroff T0-spaces, where sheaves can be
identified with functors and sheaf cohomology can be understood as their higher
limits.

First, notice that Alexandroff T0-spaces and posets are the same thing. Let P
be an Alexandroff T0-space, and x P P . Let Ux denote the minimal open set that
contains x. Then, the binary relation ď, defined below, is a partial order for P .

x ď y if x P Uy.

107
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Conversely, given a poset P , the family tPďpupPP defines a basis for the Alexan-
droff topology of P . With this topology, P is an Alexandroff T0-space.

When P is an Alexandroff T0 topological space, every functor F : OpenpPqop Ñ

ModR verifies the sheaf axiom:

sheaf axiom: Let tUiu be an open cover of an open subset U P OpenpPq. If
p fiq P

ś

i FpUiq verifies that for every i, j,

FpUi X Uj Ă Uiqp fiq “ FpUi X Ujqp f jq;

then, there exists a unique f P FpUq such that it is mapped to every fi under
FpUi Ă Uq; see [Wei94].

Moreover, the cohomology of a sheaf F : OpenpPqop Ñ ModR is isomorphic to
the higher limits of the functor F̂ : Pop Ñ ModR under the identification Pďp ÞÑ p.
Thus, every functor F : Pop Ñ ModR can be interpreted as sheaf over P .

In the case of K being a shellable complex, since they have the homotopy type
of a wedge of k spheres of dimension dim K [Bjö80], we have a description of the
sheaf cohomology of the constant sheaf R : PpKqop Ñ ModR:

Hi
pPpKqzt1̂, 0̂u; Rq –

$

’

’

’

&

’

’

’

%

Rk if i “ dim K,

R if i “ 0, or

0 otherwise.

We take inspiration from the constant sheaf to abstract the elementary condition
that implies the sheaf cohomology vanishes in the non-extreme dimensions.

Let K be a shellable complex of dimension n, and L be the face lattice of K. Let
R be a commutative ring with unit and F : Lop Ñ ModR the extension by 0 of the
constant functor R :

`

Lzt0̂u
˘op

Ñ ModR. The functor F only fails to be fibrant
in objects of dimension 1, that is, for every σ P K of dimension dim σ ‰ 1, the
natural map

Fpσq Ñ MσF

is surjective. This holds since for every τ, τ1 ≺ σ, the respective copies of R in τ

and τ1 are identified under the maps τ ą τ1 X τ ă τ1. Moreover, given Q Ă L≺σ,
the composite

Fpσq Ñ MσF Ñ lim
xQy

F
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is also an epimorphism if and only if dim σ ‰ 1. In some sense, the surjectivity
of the natural map Fpσq Ñ MσF is stable under taking restrictions. We generalise
this property in the following definition.

Definition 8.1. Let P be a dual CL-shellable poset of length n ě 2 equipped with
a recursive coatom ordering !, and F : Pop Ñ ModR be a sheaf. We say that
pP , Fq has the stability property in codegree i P N, for 0 ď i ď n, if, for every object p
of degree dppq “ n ´ i, and every Q Ă P≺p compatible with the recursive coatom
ordering, the natural map

Fppq Ñ lim
xQy

F

is an epimorphism.

This property will be fundamental in this section since it implies the nullity of
the respective cohomology module of the sheaf.

Theorem 8.2. Let P be a dual CL-shellable poset of length n ě 2, i P N such
that 1 ď i ď n ´ 1, and F : Pop Ñ ModR be a sheaf. If the pair pP , Fq has the
stability property in codegree i, then

Hi
pPzt1̂u; Fq “ 0.

We prove this theorem in the next section.

Example 8.3. Let K be a shellable complex of finite dimension n, and P be the face
poset of K. By Theorem 1.1.5, |K| has the homotopy type of a wedge of n-spheres.
Let k be the number of spheres in the wedge,

|K| –

k
ł

j“1

Sn.

Furthermore, by Theorem 1.1.8, P is dual CL-shellable of length n ` 2. Let R be a
commutative ring with unit and F : Pop Ñ ModR to be the extension by 0 of the
constant functor R : pPzt0̂uqop Ñ ModR. Then, the pair pP , Fq has the stability
property in codegree i ‰ n “ dpPq ´ 2. From Theorem 8.2 follows that

Hi
pPzt1̂u; Fq “ 0,
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for i ‰ 0, dpPq ´ 2 “ n. In addition, H0pP ; Fq “ lim F “ R and, by Theorem 5.2.11

and a short computation, HnpP ; Fq “ Rk for some k. Therefore, we recover the
well-known result:

Hi
p|K|; Rq – Hi

pP ; Fq “

$

’

’

’

&

’

’

’

%

Rk if i “ dim K

0 if 0 ă i ă dim K

R if i “ 0

8.1 combinatorial properties of the cocylinder

Let P be a poset, and Q be a subposet of P . Given F : P Ñ ModR, the
restriction morphism induced by the inclusion Q Ñ P is denoted by

ResPQ : lim
P

F Ñ lim
Q

F.

First, we need to prove the following technical lemma which will be essential for
the inductive step.

Lemma 8.1.1. Let P be a dual CL-shellable poset, and F : Pop Ñ ModR be a sheaf.
Let p P P , ! be a recursive coatom ordering in Pďp, Q Ĺ P≺p be a non-empty subset
of coatoms compatible with the recursive coatom ordering. Let r be the first coatom of
PďpzQ, this is, the element r P P≺p with the property that if s P P≺p with s ! r, then
s P Q. Then, for i ě 0, if the composite

cocyl pFq
i
prq Ñ pMrcocyl pFqq

i
Ñ lim

xCprqy
cocyl pFq

i

admits a section, then the restriction

ResxQYtruy

xQy
: lim

xQYtruy
cocyl pFq

i
Ñ lim

xQy
cocyl pFq

i ,

also admits a section.

Proof. To simplify the notation, we denote by Qr the union Q Y tru. Let i ě 0.
By hypothesis, there exists a section s : limxCprqy cocyl pFq

i
Ñ cocyl pFq

i
prq of the

composite morphism

cocyl pFq
i
prq Ñ pMrcocyl pFqq

i
Ñ lim

xCprqy
cocyl pFq

i .
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Given x “ pxqq P limxQy cocyl pFq
i

ď
ś

qPQ cocyl pFq
i
pqq, we claim that the

tuple
pspResxQy

xCprqy
pxqq, xq P cocyl pFq

i
prq ˆ

ź

qPQ

cocyl pFq
i
pqq

defines an element of limxQry cocyl pFq
i. Since Q is compatible with the coatom

ordering and r is the first element in PďpzQ, it follows that Qr is compatible with
the recursive coatom ordering. By Lemma 1.1.16, xQry Y tpu is a CL-shellable
poset of length dppq, and, by Lemma 1.1.14, the full subcategory of xQry whose
objects are those of degree dppq ´ 1 and dppq ´ 2 is a final subcategory of xQry.
Therefore, it is enough to check that, for every q P Q and every t P P≺r X P≺q, we
have cocyl pFq pt ă qqpxqq “ cocyl pFq pt ă rqpspResxQy

xCprqy
pxqqq.

Since x P limxQy cocyl pFq
i, the element

ResxQy

xCprqy
pxq P lim

xCprqy
cocyl pFq

i
ď

ź

tPCprq

cocyl pFq
i
ptq

has coordinates ResxQy

xCprqy
pxqt “ cocyl pFq pt ă qqpxqq, where q is any element in Q

such that t ă q. Moreover, since s is a section for ResxQy

xCprqy
the composite,

lim
xCprqy

cocyl pFq
i s

Ñ cocyl pFq
i
prq Ñ cocyl pFq

i
ptq

is the projection to the t-coordinate

cocyl pFq
i
prq Mrcocyl pFq

i

limxCprqy cocyl pFq
i limxCprqy cocyl pFq

i cocyl pFq
i
ptq

Id
limxCprqy cocylpFqi

Thus, we obtain the desired equality.

Next, we prove that the cocylinder of a sheaf verifies the stability property in
any codegree.

Lemma 8.1.2. Let P be a dual CL-shellable poset, and let F : Pop Ñ ModR be a sheaf.
Then, for every p P P , every recursive coatom ordering ! in Pďp and every non-empty
subset Q Ă P≺p compatible with the recursive coatom ordering, the restriction morphism

Res
Păp
xQy

: Mpcocyl pFq Ñ lim
xQy

cocyl pFq
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is a degreewise split epimorphism.

Proof. Let i ě 0. We denote by Res
Păp
xQy

: pMpcocyl pFqqi Ñ limxQy cocyl pFq
i the

restriction morphism at the fixed degree i. We proceed by induction on the
degree of the object p P P . If p is of degree 1, then the explicit description of the
morphism gives the result (see Theorem 5.2.11 with n “ 1).

We assume the statement is true for every object of degree less than n, and let
p P P with dppq “ n. If Q “ P≺p, the restriction morphism is just the identity,
and we are done. Otherwise, we proceed as follows. Let r be the first element in
r P P≺pzQ. To shorten the notation, again, we denote by Qr “ Q Y tru.

We start by constructing a section of the restriction:

ResxQry

xQy
: lim

xQry
cocyl pFq

i
Ñ lim

xQy
cocyl pFq

i

by using Lemma 8.1.1. That is, we have to prove that there exists a section for the
composite:

cocyl pFq
i
prq Ñ Mrcocyl pFq

i
Ñ lim

xCprqy
cocyl pFq

i .

We will do it by constructing a section of each morphism in the composition.
First, we prove the existence of a section s0 for the morphism

Mrcocyl pFq
i

Ñ lim
xCprqy

cocyl pFq
i .

There are two options regarding Cprq. Either Cprq “ P≺r or Cprq Ĺ P≺r. In the
first case, s0 is the identity. In the second one, we need to apply an induction
argument. By Definition 1.1.9, for the chain c “ pr ≺ pq, we have a linear order for
P≺r in which Cprq is an initial segment. Therefore, by Lemma 1.1.16, xCprqy Y tru

is a CL-shellable poset of length dprq “ n ´ 1 ă n. Then, the section s0 exists by
induction hypothesis.

Next, by Proposition 5.2.4, the matching morphism cocyl pFq prq Ñ Mrcocyl pFq

is a split epimorphism, so there exists a section s1 : Mrcocyl pFq Ñ cocyl pFq prq.
Then s1 ˝ s0 is a section of cocyl pFq

i
prq Ñ limxCprqy cocyl pFq

i.

Finally, repeating this argument finitely many times with the remaining objects
in P≺pzQ we construct the desired section.

The second step of the proof consists in showing how the stability prop-
erty in a sheaf F is translated in a weaker stability property for the subfunc-
tor of its cocylinder cocyl pFq obtained by taking object-wise the kernel of the
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differential. More formally, given a sheaf F : Pop Ñ ModR, we denote by
ker cocyl pFq

i : Pop Ñ ModR the sub-functor of cocyl pFq
i : Pop Ñ ModR de-

fined on objects by

ker cocyl pFq
i
ppq “ kerpBp : cocyl pFq

i
ppq Ñ cocyl pFq

i`1
ppqq.

Given p P P , i ě 0 and Q Ă P≺p compatible with some recursive coatom
ordering, by Lemma 8.1.2, we can consider limxQy cocyl pFq

i as a subcochain
complex of Mpcocyl pFq

i; therefore, by abuse of notation, we denote by π the
composite of the projection given by the cocylinder, π : cocyl pFq

i
Ñ Mpcocyl pFq

i,

followed by the restriction, Res
Păp
xQy

: Mpcocyl pFq
i

Ñ limxQy cocyl pFq
i:

π : cocyl pFq
i
ppq Ñ lim

xQy
cocyl pFq

i .

Indeed, this projection is a cochain complex morphism. Therefore, it can be
restricted to the kernel of the differential. We denote by π0 this restriction:

π0 : ker cocyl pFq
i
ppq Ñ lim

xQy
ker cocyl pFq

i .

If P is a dual CL-shellable poset, and h0 ! h1 ! ¨ ¨ ¨ ! hn is a recursive coatom
ordering for P , we denote by Pk to be the subposet of P generated by the first
k ´ 1 coatoms, i.e.,

Pk “ xh0, . . . hk´1y.

Lemma 8.1.3. Let P be a dual CL-shellable poset, and ! be a recursive coatom ordering
for P . Let F : Pop Ñ ModR be a sheaf and i ą 0. If, for every coatom h, the morphism:

π0 : ker cocyl pFq
i´1

phq Ñ lim
xCphqy

ker cocyl pFq
i´1

is an epimorphism, then HipPzt1̂u; Fq “ 0.

Proof. We assume without loss of generality that dpPq ą 2; otherwise, there
is nothing to prove. Let P be a dual CL-shellable poset of length n ą 2 with
recursive coatom ordering !, and let h0 ! h1 ¨ ¨ ¨ ! hm be the coatom of P ordered
by !. By Proposition 5.1.12, HipP ; Fq “ Hiplim cocyl pFqq. Then, HipP ; Fq “ 0 if
and only if the sequence

lim
Pzt1̂u

cocyl pFq
i´1 B

ÝÑ lim
Pzt1̂u

cocyl pFq
i B

ÝÑ lim
Pzt1̂u

cocyl pFq
i`1
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is exact. Let α “ pαjq P lim cocyl pFq
i

ď
śm

j“0 cocyl pFq
i
phjq such that Bα “ 0. We

construct, by induction on the ordering h1, h2, . . . , hm, an element β in the limit
lim cocyl pFq

i´1 such that Bβ “ α.

Since α P lim cocyl pFq
i with Bα “ 0, the projection on cocyl pFq ph0q is a cocycle

i.e., Bα0 “ 0. By Definition 5.2.9, Hipcocyl pFq ph0qq “ 0 because i ą 0. Then, there
exists β0 P cocyl pFq

i´1
pC0q such that Bβ0 “ α0. Now, assuming that, there exists

a tuple pβ0, . . . , βk´1q P limPk cocyl pFq
i´1 such that, for every j “ 0, . . . , k ´ 1,

Bβ j “ αj, we construct βk P cocyl pFq
i´1

phkq with the analogous conditions, this
is, Bβk “ αk and pβ0, . . . , βkq P limPk`1 cocyl pFq

i´1 as follows:

As in the case of h0, since Bαk “ 0, we choose any β̃ P cocyl pFq
i´1

phkq such that
Bβ̃ “ αk. If pβ0, . . . , βk´1, β̃q defines an element in the limit limPk`1 cocyl pFq

i´1,
we are done. Otherwise, consider γ “ pγrq P

ś

rPCphkq cocyl pFq
i´1

prq, described
by:

γr “ cocyl pFq pr ă hjqpβ jq ´ cocyl pFq pr ă hkqpβ̃q P cocyl pFq
i´1

prq.

Note that given r ≺ hk, it is possible having more than one h with the property
that hj ! hk and r ≺ hj, hk. But, since pβ1, . . . , βk´1q defines an element in
limPk cocyl pFq

i´1, if hj, hl ! hk have the property that r ≺ hj, hl, then

cocyl pFq pr ă hjqpβ jq “ cocyl pFq pr ă hlqpβlq.

We claim that γ P limxCphkqy ker cocyl pFq
i´1. First, we prove that γ belongs to the

limit limxCphkqy cocyl pFq
i´1. But this is true because γ can be written as a sum

of the image through the projection cocyl pFq
i´1

Ñ limxCphkqy cocyl pFq
i´1 of ´β̃,

and the image through the restriction limPk cocyl pFq
i´1

Ñ limxCphkqy cocyl pFq
i´1

of pβ0, . . . , βk´1q. Then we only need to check that Bγ “ 0. Notice that cocyl pFq

is a cochain complex-valued functor; in particular, for every p ă q, the mor-
phism cocyl pFq pp ă qq commutes with the differential. Therefore, for every
j “ 0, . . . , k ´ 1:

Bγr “ Bpcocyl pFq pr ă hjqpβ jq ´ cocyl pFq pr ă hkqpβ̃qq

“ Bpcocyl pFq pr ă hjqpβ jqq ´ Bpcocyl pFq pr ă hkqpβ̃qq

“ cocyl pFq pr ă hjqpBβ jq ´ cocyl pFq pr ă hkqpBβ̃q

“ cocyl pFq pr ă hjqpαjq ´ cocyl pFq pr ă hkqpαkq

“ 0.
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By hypothesis, π0 : ker cocyl pFq
i´1

phkq Ñ limxCphkqy ker cocyl pFq
i´1 is an epi-

morphism, therefore there exists an element ω P ker cocyl pFq
i´1

phkq such that
π0pωq “ γ. Then, we define βk “ β̃ ` ω.

Now, we have to check that βk verifies the conditions described at the beginning.
By definition, Bβk “ Bβ̃ ´ Bω “ Bβ̃ “ αk. To check that the tuple pβ1, β2, . . . , βkq

defines a compatible tuple, we proceed as follows. By Lemma 1.1.16, Pk`1 Y t1̂u is
dual CL-shellable of the same degree, and, by Lemma 1.1.14, the full subcategory
whose objects are the ones of degree n ´ 1 and n ´ 2 is final in Pk`1. We are thus
left to prove that, for every j “ 0, . . . , k ´ 1,

cocyl pFq pr ă hjqpβ jq “ cocyl pFq pr ă hkqpβkq.

But this is clear by the definition of βk.

Finally, repeating this process for every coatom of P , we obtain the desired
β P limPzt1̂u

cocyl pFq
i´1 such that Bβ “ α.

Finally, we are able to prove the main theorem.

Theorem 8.2. Let P be a dual CL-shellable poset of length n ě 2, and let
F : Pop Ñ ModR be a sheaf. Given 1 ď i ď n ´ 1, if the pair pP , Fq has the
stability property in codegree i, then

Hi
pPzt1̂u; Fq “ 0.

Proof. We proceed by induction on the codegree of the stability property of the
pair.

Let F : Pop Ñ ModR be a sheaf over a dual CL-shellable poset with coatom
ordering !. Assume that the pair pP , Fq has the stability property in codegree 1.
In particular, for every coatom h, the natural map Fphq Ñ limxCphqy F is an
epimorphism because Cphq is compatible with the recursive coatom ordering. By
Lemma 8.1.3, it is enough to check that, for every coatom h, the morphism

π0 : ker cocyl pFq
0

phq Ñ lim
xCphqy

ker cocyl pFq
0

is an epimorphism.
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If Cphq “ ∅ there is nothing to prove; otherwise, as there is a natural iso-
morphism between ker cocyl pFq

0 and F, we have the following commutative
diagram:

ker cocyl pFq
0

phq limxCphqy ker cocyl pFq
0

Fphq limxCphqy F.

– –

By hypothesis, the natural morphism Fphq Ñ limxCphqy F is an epimorphism. So
we conclude that ker cocyl pFq

0
phq Ñ limxCphqy ker cocyl pFq

0 is an epimorphism
too.

Now, assume that, for every i ă n, and every pair pP 1, F1q with the stability
property in codegree i, we have HipP 1zt1̂u; F1q “ 0. Consider a pair pP , Fq with
the stability property in codegree n, and ! a recursive coatom ordering for P .
Again, by applying Lemma 8.1.3, we have to check that, for every coatom h the
morphism

π0 : ker cocyl pFq
n´1

phq Ñ lim
xCphqy

ker cocyl pFq
n´1

is an epimorphism. We assume without loss of generality that Cphq ‰ ∅. Notice
that the following diagram is commutative:

ker cocyl pFq
n´1

phq limxCphqy ker cocyl pFq
n´1

cocyl pFq
n´2

phq Mhcocyl pFq
n´2 limxCphqy cocyl pFq

n´2 ,

π0

where the vertical morphisms are the respective differentials and the bottom
horizontal morphism is the composition of the projection given by the mapping co-
cylinder cocyl pFq

n´2
phq Ñ Mhcocyl pFq

n´2 followed by the restriction morphism
Mhcocyl pFq

n´2
Ñ limxCphqy cocyl pFq

n´2. We prove that π0 is an epimorphism by
proving that every other morphism in the diagram is onto.

By exactness of cocyl pFq phq, the image of its differential at height n ´ 2,
cocyl pFq

n´2
phq Ñ cocyl pFq

n´1
phq is just ker cocyl pFq

n´1
phq, thus the first verti-

cal map is an epimorphism. Since cocyl pFq is a fibrant functor, the morphism
cocyl pFq

n´2
phq Ñ Mhcocyl pFq

n´2 is an epimorphism and, by Lemma 8.1.2, the
restriction map Mhcocyl pFq

n´2
Ñ limxCphqy cocyl pFq

n´2 is also an epimorphism.

Finally, notice that Cphq is compatible with the recursive coatom ordering.
Therefore, by Lemma 1.1.16, the poset xCphqy Y thu is a dual CL-shellable poset



8.2 cohomology of the i-linear forms sheaf 117

of length dphq “ dpPq ´ 1 “ d ´ 1, and the pair pxCphqy Y thu, F |CphqYthuq has the
stability property at codegree n ´ 1; this is clear since

dpPq ´ n “ dpxCphqyq Y thuq ` 1 ´ n “ dphq ` 1 ´ n “ dphq ´ pn ´ 1q.

Then, by hypothesis induction Hn´1pxCphqy; Fq “ 0. So, we conclude that the
differential

lim
xCphqy

cocyl pFq
n´2

Ñ lim
xCphqy

ker cocyl pFq
n´1

is an epimorphism.

8.2 cohomology of the i-linear forms sheaf

Let V be a finite-dimensional k-vector space, H be a finite set of hyperplanes
of V, and LH the arrangement lattice of H. For every i ě 1, we define the i-linear
forms sheaf on LH to be the sheaf Λip´q˚ : Lop

H Ñ Vectk that sends every W P L to
the i-linear forms of W, i.e.,

Λi HompW, kq “ ΛiW˚,

and W1 ă W to the restriction ΛiW˚ ↠ ΛipW1q˚.

Theorem 8.2.1 ([ET22b]). Let V be a finite-dimensional vector space, H be a
finite set of hyperplanes of V, and LH the arrangement lattice of H. For every
j ă dpLHq ´ i ´ 2, the j-th cohomology of the i-linear forms sheaf on LHzt1̂u

vanishes, this is:
H j

pLHzt1̂u; Λi
p´q

˚
q “ 0.

Recently this result has been proven by Everitt-Turner [ET22b] using a deletion-
restriction method [ET22a]. Here, we prove it by showing that i-linear form sheaf
verifies the stability property on the required codegree. In order to prove it, we
will need the following lemmas.
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Lemma 8.2.2. Let V be a vector space of dimension n, H be a finite set of hyperplanes,
and Q Ă H be a set of independent hyperplanes of V. Let LH be the arrangement lattice
of H. Then, for every i ď n ´ 1, the natural morphism induced by the restriction:

ΛiV˚
Ñ lim

xQy
Λi

p´q
˚

is an epimorphism. Moreover, if |Q| ě i ` 1, it is an isomorphism.

Proof. Let h1, . . . , hr be the hyperplanes in Q. By the independence of Q and
using an argument similar to the proof of Lemma 1.1.19, there exists a basis
B “ te1, . . . , enu of V˚ such that the set

Bj “

!

pe1|hjq, pe2|hjq, . . . , {pej|hjq, . . . , pen|hjq

)

is a basis of h˚
j . By abuse of notation, we denote just by es the 1-form restricted to

h, es|h, for every h P Q.

Now, for i ď dimphjq “ n ´ 1, a basis of Λih˚
j is given by:

ΛiBj :“
␣

ek1 ^ ek2 ^ ¨ ¨ ¨ ^ eki | 1 ď k1 ă k2 ă ¨ ¨ ¨ ă ki ď n, j ‰ k1, . . . , ki
(

.

By Lemma 1.1.14, an element pxjq P limxQy Λip´q˚ is an element of the product
śr

j“1 Λih˚
j with the property that, for every j ­“ j1 and every tuple pk1, k2, . . . , kiq

with 1 ď k1 ă k2 ă ¨ ¨ ¨ ă ki ď n and k1, k2, . . . , ki R tj, j1u, the pk1, . . . , kiq-
coordinate of xj and xj1 coincides:

pxjqpk1,k2,...,kiq
“ pxj1qpk1,k2,...,kiq

.

Therefore, a basis of limxQy Λip´q˚ is the union of the basis ΛiBj, and this is a
subset of the basis of ΛiV˚ induced by the basis B,

ΛiB :“
␣

ek1 ^ ek2 ^ ¨ ¨ ¨ ^ eki | 1 ď k1 ă k2 ă ¨ ¨ ¨ ă ki ď n
(

.

Moreover, if r ě i ` 1 for every tuple pk1, . . . , kiq such that 1 ď k1 ă ¨ ¨ ¨ ă ki ď n,
the element ek1 ^ ek2 ^ ¨ ¨ ¨ ^ ekr´1 P ΛiB is in the basis ΛiBj of Λih˚

j , where j is any
element of the set t1, . . . , ruztk1, k2, . . . kiu.

As a direct corollary, we obtain the following result.
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Corollary 8.2.3. Let V be a vector space of dimension n, H be a finite set of hyperplanes,
and L the arrangement lattice of H. Let Q Ă H be a basis of L. Then, if i ă dpVq, the
natural morphism induced by the restriction:

ΛiV˚
Ñ lim

xQy
Λi

p´q
˚

is an isomorphism

Proof. Notice that i ă dpVq “ dim V ´ dim 0̂ ď dim V. Moreover, Q is basis, in
particular, an independent set of coatoms and, by Corollary 1.1.20, |Q| “ dpVq ą i.
We are done after applying Lemma 8.2.2.

Lemma 8.2.4. Let V be a finite-dimensional vector space and H be a finite set of
hyperplanes in V. Let L be the arrangement lattice of H, and ! be a basis-like recursive
coatom ordering for L. Suppose W P L, and Q is a subset of coatoms of LďW compatible
with the recursive coatom ordering. Then, the natural morphism induced by the restriction
map,

ε : ΛiW˚
Ñ lim

xQy
Λi

p´q
˚,

is an epimorphism if dim W ą dim 0̂ ` i ` 2.

Proof. Let c be an irreducible chain from W to 1̂ that makes Q compatible with the
recursive coatom ordering, and B be the basis of the geometric lattice LďW given
by the first coatoms in pL≺W , !cq. By the compatibility of Q with the recursive
coatom ordering, then, either Q Ď B or B Ĺ Q.

In the first case, Q Ď B is an independent set of coatoms of the geometric
lattice LďW with i ă i ` 2 ` dim 0̂ ă dim W. Then, according to Lemma 8.2.2, the
natural morphism

ε : ΛiW˚
ÝÑ lim

xQy
Λi

p´q
˚

is an epimorphism. Notice that it is an isomorphism if Q “ B; see Corollary 8.2.3.

In the second case, where B Ĺ Q, we prove that the natural morphism

ε : ΛiW˚
ÝÑ lim

ωPxQy
Λiω˚

is an isomorphism. The composite

ΛiW˚ ε
ÝÑ lim

ωPxQy
Λiω˚ ResQ

B
ÝÑ lim

ωPxBy
Λiω˚,



120 sheaf cohomology of cl-shellable posets

is the morphism induced by the restriction. This is the extremal case of Q “ B,
and we have shown that it is an isomorphism. Thus, to show that ε is an
isomorphism, it is enough to prove that the restriction morphism:

ResQ
B : lim

xQy
Λi

p´q
˚

ÝÑ lim
xBy

Λi
p´q

˚

is also an isomorphism. Let ω1, ω2, . . . , ω|Q| be the elements of Q ordered by !c.

We begin by proving the injectivity of the restriction morphism. Suppose, by
contradiction, that there exists α “ pαkq P limxQy Λip´q˚ ď

ś|Q|

k“1 Λiω˚
k such that

α ‰ 0 and ResxQy

xBy
pαq “ 0. Therefore, there exists ωj P QzB such that αj ‰ 0.

By Lemma 1.1.21, there exists B0 Ă B such that B0 Y tωju is a basis of LďW ,
and B1 “ tωj X ωk | ωk P B0u Ă Cpωjq is a basis. By functoriality, for every
ωk X ωj P B1,

αj|ωkXωj “ αk|ωkXωj ,

and, by hypothesis, αk “ 0, so αj|ωkXωj “ 0. The set B1 is a basis of the geometric
lattice Lďωj , and dpωjq “ dpWq ´ 1 ą i ` 2 ´ 1 “ i ´ 1. Then, by Corollary 8.2.3,
the natural morphism induced by the restriction

φ : Λiω˚
j Ñ lim

xB1y
Λi

p´q
˚

is an isomorphism. but, φpαjq “ pαj|ωjXωkq P
ś

ωjXωkPB1 Λipωj X ωkq˚ which is 0;
this contradicts that αj ‰ 0.

Next, we show that the morphism is onto. Let Rj “ tω0, ω1, . . . , ωju be the set
of the first j coatoms of L≺W . For every j “ dpWq, dpWq ` 1, . . . , |Q| ´ 1, we prove
that the restriction morphism,

Res
Rj`1
Rj

: lim
xRj`1y

Λi
p´q

˚
ÝÑ lim

xRjy
Λi

p´q
˚,

is an epimorphism.

Let α be any element of the limit limxRjy
Λip´q˚ of coordinates pαsq P

śj
s“1 Λiω˚

s ,
and let D Ă Cpωj`1q a basis of the geometric lattice Lďωj`1 . As before, we
apply Corollary 8.2.3, because D is a basis of the geometric lattice Lďωj`1 and
dpωj`1q ą i ` 1, obtaining that the natural map induced by the restriction

φ : Λiω˚
j`1 Ñ lim

xDy
Λi

p´q
˚
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is an isomorphism. Then, We claim that the element αj`1 P Λiω˚
j`1 defined by

αj`1 “ φ´1
pRes

Rj
D pαqq

verifies that the tuple pα1, α2, . . . , αj, αj`1q P
śj`1

s“1 Λiω˚
s belongs to limxRj`1y Λip´q˚.

By Lemma 1.1.14, it is enough to prove, for every s ă j ` 1, that the following
identity holds:

αs|ωsXωj`1 “ αj`1|ωsXωj`1 . (19)

If ωs X ωj`1 P D, then the identity holds by definition.

Otherwise, by Lemma 1.1.21, there exists D0 Ĺ D such that D0 Y tωs X ωj`1u is
a basis of Lďωj`1 , the set

D1
“ tωk X ωs X ωj`1 | ωk P D0u

is a basis of LďpωsXωj`1q.

As α is an element of the limit limRj Λip´q˚, for every ωs X ωj`1 X ωk P D1, it is
verified

αs|ωsXωj`1Xωk “ αk|ωsXωj`1Xωk .

Moreover, by definition of αj`1, it coincides with αj`1|ωsXωj`1Xωk .

Next, the morphism induced by the restriction

φ1 : Λi
pωs X ωj`1q

˚
Ñ lim

xD1y
Λi

p´q
˚

is an isomorphism because dpωs X ωj`1q “ dpWq ´ 2 ą i ` 2 ´ 2 ą i, and D1 is
basis of LďωsXωj`1 , see Corollary 8.2.3. In particular, it is injective and,

φ1
pαj`1|ωsXωj`1q “ pαk|ωsXωj`1Xωkq P

ź

ωsXωj`1XωkPD1

Λi
pωs X ωj`1 X ωkq

˚.

This implies Equation (19) holds.

Proof of Theorem 8.2.1. Let L “ LH and ! be a basis-like recursive coatom ordering
for L. By Theorem 8.2, it is enough to check that the pair pL, Λip´q˚q has the
stability property at codegree j ă dpLq ´ i ´ 2.
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So, let W P L of degree dpWq “ dpLq ´ j ą i ` 2 and Q be a subset of coatoms
of LďW compatible with the recursive coatom ordering. Then, by Lemma 8.2.4,
the natural map induced by the restriction map

ΛiW˚
Ñ lim

xQy
Λi

p´q
˚

is an epimorphism, and this concludes the proof.
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[Sło01] J. Słomińska. Decompositions of categories over posets and cohomol-
ogy of categories. Manuscripta Math., 104(1):21–38, 2001.

[Str72] A. Strøm. The homotopy category is a homotopy category. Arch. Math.
(Basel), 23:435–441, 1972.

[Wal85] J. W. Walker. A poset which is shellable but not lexicographically
shellable. European J. Combin., 6(3):287–288, 1985.



bibliography 127

[Web00] P. Webb. A guide to Mackey functors. In Handbook of algebra, Vol. 2,
volume 2 of Handb. Algebr., pages 805–836. Elsevier/North-Holland,
Amsterdam, 2000.

[Wei94] C. A. Weibel. An introduction to homological algebra, volume 38 of
Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 1994.

[Woj87] Z. Wojtkowiak. On maps from hocolimF to Z. In Algebraic topology,
Barcelona, 1986, volume 1298 of Lecture Notes in Math., pages 227–236.
Springer, Berlin, 1987.





I N D E X

Category
complete, 26

Circuit, 90

Coatom, 14

recursive coatom ordering, 14

basis-like, 20

compatible set, 17

Cocylinder, 40

truncated mapping cocylinder, 66

functor, 68

mapping cocylinder, 65

Cofibrant, 37

Colimit
bicomplete, 30

cochain complexes, 32

cocomplete, 30

cocone, 29

pushout, 31

R-module, 31

Coproduct, 30

Cylinder, 40

mapping cylinder, 74

Derived functor
left, 42

total, 43

right, 43

total, 43

EI-category, 48

isomorphism poset, 4

filtered, 5, 58

Fibrant, 37

locally, 65

Fusion system, 4

Higher
colimit, 58, 64

limit, 57, 63, 93

Homotopy, 41

category, 41
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colimit, 44

left, 40

limit, 44, 63

right, 41

Kan extension, 32

Labelling
chain edge-labelling, 12

EL-labelling, 12

function, 91

Latching
object, 50

relative latching map, 52

Lattice, 18

arrangement lattice, 18

geometric lattice, 18

independent set, basis, 18

intersection lattice, 18

join-semilattice, 30

meet-semilattice, 27

Lifting problem, 36

Limit, 26

bicomplete, 30

cone, 26

R-module, 27

LLP (left lifting property), 36

Matching
object, 51

relative matching map, 52

Model category, 36

Strøm, 37

bijective, 52, 59

classical for Top, 38

direct, 62

generalised Reedy model
category, 53

injective, 38

inverse, 61

projective, 38

Orbit Category, 48

Poset, 3

bounded, 7

DCC, 7

face poset, 5

graded, 7

pure, 7

tree, 95, 97

Product, 27

Pullback, 27

Quillen pair, 44

Reedy
generalised Reedy structure, 47,

59

Replacement
cofibrant, 39

fibrant, 39

RLP (right lifting property), 36

Shellable, 9

(dual) CL-shellable, 13

edge labelling, 11

EL-shellable, 12

shelling, 9

Simplicial complex
facets, 9

Truncatable
F-truncatable, 89
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